Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Preparation of highly dispersed Ni/ Al2O3 catalysts by heat treatment of supported basic nickel nitrate with hydrogen-containing gas

https://doi.org/10.18412/1816-0387-2025-6-12-20

Abstract

The process of preparing a highly concentrated Ni/Al2O3 catalyst by impregnating γ-Al2O3 with a nickel nitrate solution followed by calcination in a hydrogen-containing atmosphere was studied. Calcination of the supported Ni3(OH)4(NO3)2, which is formed during the heat treatment of the impregnated carrier at 200 °C, in an H2 environment (H2 content ≥20%) at 230 °C promotes the formation of a phase of highly dispersed NiO. In this case, nitrate ions are completely removed and there is no enlargement of the active component particles compared to the initial Ni3(ОН)4(NO3)2 phase. A decrease in the H2 concentration in the gas mixture reduces the rate of nitrate decomposition and leads to an agglomeration of the active component particles at an H2 content of ≤5%. An assumption is made about the role of hydrogen in the process of calcining the catalyst precursor.

About the Authors

A. L. Nuzhdin
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


M. V. Bukhtiyarova
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


V. P. Pakharukova
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


E. M. Slavinskaya
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


I. V. Shamanaev
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


G. A. Bukhtiyarova
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


References

1. Bartholomew C.H., Farrauto R.J. // J. Сatal. 1976. V. 45. № 1. P. 41—53. https://doi.org/10.1016/0021-9517(76)90054-3

2. Rynkowski J.M., Paryjczak T., Lenik M. // Appl. Catal. A Gen. 1993. V. 106. № 1. P. 73—82. https://doi.org/10.1016/0926-860X(93)80156-K

3. Голубина Е.В., Локтева Е.С., Кавалерская Н.Е., Маслаков К.И. // Кинетика и катализ. 2020. Т. 61. № 3. С. 410—427. https://doi.org/10.31857/S0453881120030144

4. Крылов О.В., Мытышак В.А. // Успехи химии. 1995. Т. 64. № 1. С. 66—92.

5. Навалихина М.Д., Крылов О.В. // Успехи химии. 1998. Т. 67. № 7. С. 656—687.

6. Gao X., Ashok J., Kawi S. // Catal. Today. 2022. V. 397-399. P. 581—591. https://doi.org/10.1016/j.cattod.2021.06.009

7. Ewbank J.L., Kovarik L., Diallo F.Z., Sievers C. // Appl. Catal. A Gen. 2015. V. 494. P. 57—67. https://doi.org/10.1016/j.apcata.2015.01.029

8. Sietsma J.R.A., Meeldijk J.D., den Breejen J.P., Versluijs-Helder M., van Dillen A.J., de Jongh P.E., de Jong K.P. // Angew. Chem. Int. Ed. 2007. V. 46. P. 4547—4549. https://doi.org/10.1002/anie.200700608

9. Wolters M., Daly H., Goguet A., Meunier F.C., Hardacre C., Bitter J.H., de Jongh P.E., de Jong K.P. // J. Phys. Chem. C. 2010. V. 114. P. 7839—7845. https://doi.org/10.1021/jp910840k

10. Li F., Yi X.D, Fang W.P. // Catal. Lett. 2009. V. 130. P. 335—340. https://doi.org/10.1007/s10562-009-0030-z

11. Schimpf S., Louis C., Claus P. // Appl. Catal. A Gen. 2007. V. 318. P. 45—53. https://doi.org/10.1016/j.apcata.2006.10.034

12. Malecka B., Lacz A., Drozdz E., Malecki A. // J. Therm. Anal. Calorim. 2015. V. 119. P. 1053—1061. https://doi.org/10.1007/s10973-014-4262-9

13. Gjørup F.H., Ahlburg J.V., Christensen M. // Rev. Sci. Instrum. 2019. V. 90. Art. 073902. https://doi.org/10.1063/1.5089592

14. Coenen K., Gallucci F., Mezari B., Hensen E., van Sint Annaland M. // J. CO2 Util. 2018. V. 24. P. 228—239. https://doi.org/10.1016/j.jcou.2018.01.008

15. Elmasrv M.A.A., Gaber A., Khater E.M.H. // J. Therm. Anal. 1998. V. 52. P. 489—495.

16. Sietsma J.R.A., Meeldijk J.D., Versluijs-Helder M., Broersma A., van Dillen A.J., de Jongh P.E., de Jong K.P. // Chem. Mater. 2008. V. 20. № 9. P. 2921—2931. https://doi.org/10.1021/cm702610h


Review

For citations:


Nuzhdin A.L., Bukhtiyarova M.V., Pakharukova V.P., Slavinskaya E.M., Shamanaev I.V., Bukhtiyarova G.A. Preparation of highly dispersed Ni/ Al2O3 catalysts by heat treatment of supported basic nickel nitrate with hydrogen-containing gas. Kataliz v promyshlennosti. 2025;25(6):12-20. (In Russ.) https://doi.org/10.18412/1816-0387-2025-6-12-20

Views: 134

JATS XML

ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)