Preparation of highly dispersed Ni/ Al2O3 catalysts by heat treatment of supported basic nickel nitrate with hydrogen-containing gas
https://doi.org/10.18412/1816-0387-2025-6-12-20
Abstract
The process of preparing a highly concentrated Ni/Al2O3 catalyst by impregnating γ-Al2O3 with a nickel nitrate solution followed by calcination in a hydrogen-containing atmosphere was studied. Calcination of the supported Ni3(OH)4(NO3)2, which is formed during the heat treatment of the impregnated carrier at 200 °C, in an H2 environment (H2 content ≥20%) at 230 °C promotes the formation of a phase of highly dispersed NiO. In this case, nitrate ions are completely removed and there is no enlargement of the active component particles compared to the initial Ni3(ОН)4(NO3)2 phase. A decrease in the H2 concentration in the gas mixture reduces the rate of nitrate decomposition and leads to an agglomeration of the active component particles at an H2 content of ≤5%. An assumption is made about the role of hydrogen in the process of calcining the catalyst precursor.
Keywords
About the Authors
A. L. NuzhdinRussian Federation
M. V. Bukhtiyarova
Russian Federation
V. P. Pakharukova
Russian Federation
E. M. Slavinskaya
Russian Federation
I. V. Shamanaev
Russian Federation
G. A. Bukhtiyarova
Russian Federation
References
1. Bartholomew C.H., Farrauto R.J. // J. Сatal. 1976. V. 45. № 1. P. 41—53. https://doi.org/10.1016/0021-9517(76)90054-3
2. Rynkowski J.M., Paryjczak T., Lenik M. // Appl. Catal. A Gen. 1993. V. 106. № 1. P. 73—82. https://doi.org/10.1016/0926-860X(93)80156-K
3. Голубина Е.В., Локтева Е.С., Кавалерская Н.Е., Маслаков К.И. // Кинетика и катализ. 2020. Т. 61. № 3. С. 410—427. https://doi.org/10.31857/S0453881120030144
4. Крылов О.В., Мытышак В.А. // Успехи химии. 1995. Т. 64. № 1. С. 66—92.
5. Навалихина М.Д., Крылов О.В. // Успехи химии. 1998. Т. 67. № 7. С. 656—687.
6. Gao X., Ashok J., Kawi S. // Catal. Today. 2022. V. 397-399. P. 581—591. https://doi.org/10.1016/j.cattod.2021.06.009
7. Ewbank J.L., Kovarik L., Diallo F.Z., Sievers C. // Appl. Catal. A Gen. 2015. V. 494. P. 57—67. https://doi.org/10.1016/j.apcata.2015.01.029
8. Sietsma J.R.A., Meeldijk J.D., den Breejen J.P., Versluijs-Helder M., van Dillen A.J., de Jongh P.E., de Jong K.P. // Angew. Chem. Int. Ed. 2007. V. 46. P. 4547—4549. https://doi.org/10.1002/anie.200700608
9. Wolters M., Daly H., Goguet A., Meunier F.C., Hardacre C., Bitter J.H., de Jongh P.E., de Jong K.P. // J. Phys. Chem. C. 2010. V. 114. P. 7839—7845. https://doi.org/10.1021/jp910840k
10. Li F., Yi X.D, Fang W.P. // Catal. Lett. 2009. V. 130. P. 335—340. https://doi.org/10.1007/s10562-009-0030-z
11. Schimpf S., Louis C., Claus P. // Appl. Catal. A Gen. 2007. V. 318. P. 45—53. https://doi.org/10.1016/j.apcata.2006.10.034
12. Malecka B., Lacz A., Drozdz E., Malecki A. // J. Therm. Anal. Calorim. 2015. V. 119. P. 1053—1061. https://doi.org/10.1007/s10973-014-4262-9
13. Gjørup F.H., Ahlburg J.V., Christensen M. // Rev. Sci. Instrum. 2019. V. 90. Art. 073902. https://doi.org/10.1063/1.5089592
14. Coenen K., Gallucci F., Mezari B., Hensen E., van Sint Annaland M. // J. CO2 Util. 2018. V. 24. P. 228—239. https://doi.org/10.1016/j.jcou.2018.01.008
15. Elmasrv M.A.A., Gaber A., Khater E.M.H. // J. Therm. Anal. 1998. V. 52. P. 489—495.
16. Sietsma J.R.A., Meeldijk J.D., Versluijs-Helder M., Broersma A., van Dillen A.J., de Jongh P.E., de Jong K.P. // Chem. Mater. 2008. V. 20. № 9. P. 2921—2931. https://doi.org/10.1021/cm702610h
Review
For citations:
Nuzhdin A.L., Bukhtiyarova M.V., Pakharukova V.P., Slavinskaya E.M., Shamanaev I.V., Bukhtiyarova G.A. Preparation of highly dispersed Ni/ Al2O3 catalysts by heat treatment of supported basic nickel nitrate with hydrogen-containing gas. Kataliz v promyshlennosti. 2025;25(6):12-20. (In Russ.) https://doi.org/10.18412/1816-0387-2025-6-12-20
JATS XML





















