Synthesis and study of massive molybdenum carbides and supported carbide containing catalyst composition Мо2С/С, obtained by mechanical activation
Abstract
The methods the first time are developed for the synthesis of solid molybdenum carbide by mechanical activation in air of mixture MoO3, carbon and Zn; for synthesis of supported carbide containing catalyst Mo2C/C composition by the method of mechanical activation in an inert atmosphere of carbon impregnated with 16 % aqueous solution of ammonium paramolybdate. The metal content, particle size, surface area, phase composition are determined for mechanically activated compositions using a complex of physical and chemical methods. Structure of carbide containing supported catalyst was studied by electron microscopy, catalyst’s acidic properties were studied by temperature-programmed desorption of ammonia and the catalytic test were carried out in model reactions of hydrodesulfurization of dibenzothiophene (DBT) and aromatization of alkanes. It is shown that the catalyst composition Mo2C/C exhibits a high activity in these reactions: conversion of DBT at contact time 3–6 hours is 80–85 %; conversion of n- heptane at a contact time of 2 hours is 31,2 %, and the reaction product is 100% toluene. Increasing the contact time to 6 hours reduces the conversion of n-heptane and 1,3 % , wherein in the reaction product contains up to 47 % of С6–С7 cycloalkane. The results show a high catalytic activity of Mo2C/C, obtained by mechanical activation.
About the Authors
A. V. VasiljevichRussian Federation
O. N. Baklanova
Russian Federation
A. V. Lavrenov
Russian Federation
O. A. Knyazheva
Russian Federation
T. I. Gulyaeva
Russian Federation
M. V. Trenihin
Russian Federation
V. A. Likholobov
Russian Federation
References
1. Хавкин В.А., Соляр Б.З., Гуляева Л.А. // Мир нефтепродуктов. 2008. № 2. С. 8—12.
2. Ахметов С.А. Технология глубокой переработки нефти и газа: Учебное пособие для вузов. Уфа: Гилем, 2002.
3. Del Bianco A., Panariti N., Di Carlo S., Elmouchnino J., Fixari B., Le Perchec P. // Applied catalysis A: General. 1993. Vol. 94. P. 1—16.
4. Zhang S., Liu D., Deng W., Que G. // Energy&Fuels. 2007. Vol. 21, № 6. P. 3057—3062.
5. Anderson R.F., Olson R.K., Hatchings L.E. et al. // Future heavy crude tar sands, 2nd International Conference. (Caracas, Venezuela, 7—17 February 1982). MacGraw-Hill, New York, 1984. P. 1189.
6. Menzies M.A., Silva A.E. // Chem. Ing. 1981. Vol. 88, № 4. P. 58—66.
7. Snape C.T., Bolton C., Dosch R.G., Stephens H.P. // Energy&Fuels. 1986. Vol. 3, P. 421.
8. Кадиева М.Х., Хаджиев С.Н. и др. // Нефтехимия. 2011. Т. 51. № 1. С. 17—24.
9. Хаджиев С.Н. // Нефтехимия. 2011. Т. 51. № 1. С.3—16.
10. Pat. (US) 5 466 363. Integrated process for hydrotreating heavy oil, then manufacturing an alloy or steel using a carbon-based catalyst / Costandi A. Audeh, Lillian A. Rankel. 1995.
11. Pat. (US) 2010/0224535. Carbon supported catalyst for demetallation of heavy crude oil and residue / Maity S.K., Ancheyta J.J., Alonso M.F., Fukuyama H., Terai S., Uchida M. 2010.
12. Yermakov Y.I., Starsev A.N., Shuropat S.A. et. al. // React. Kinet. Catal. Lett. 1988. Vol. 36. P. 65—70.
13. Furimsky E. // Applied Catalysis A: General. 2003. Vol. 240. P. 1—28.
14. Sayag C., Benkhaled M., Suppan S., Trawezynski J., Djega-Mariadassou G. // Applied Catalysis A: General. 2004. Vol. 275. P. 15—24.
15. Clair T.P.St., Dhandapani B., Oyama S.T. // Catal. Lett. 1999. Vol. 58. P. 169—171.
16. Frauwaiiner M.L., Lopez-Linares F., Lara-Romero J., Scott C.E., Ali V., Hernandez E., Pereira-Almao P. // Applied Catalysis A: General. 2011. Vol. 394. P. 62—70.
17. Xiang M., Li D., Sun J., She X. // J. Natural Gas Chemistry. 2010. Vol. 19. P. 151—155.
18. Tominaga H., Nagai M. // Applied Catalysis A: General. 2007. Vol. 328. P. 35—42.
19. Puello-Polo E., Brito J.L. // Catalysis Today. 2010. Vol. 149. P. 316—320.
20. Szymanska-Kolasa A., Lewandowski M., Sayag C., Brodzki D., Diega-Mariadassou G. // Catalysis Today. 2007. Vol. 119. P. 35—38.
21. Pielazec J., Mierzwa B., Medjahdi G., Mareche J.F., Puricelli S., Celzard A., Furdin G. // Applied Catalysis A:
22. General. 2005. Vol. 296. Р. 232—237.
23. Hyeon T., Fang M., Suslick K.S. // J. Am. Chem. Soc. 1996. Vol. 118. P. 5492—5493.
24. Lee J.S., Oyama S.T., Boudart M. // J. Catalysis. 1987. Vol. 106. P. 125—133.
25. Guil-Lopez R., Nieto E., Botas J.A., Fierro J.L.G. // J. Solid State Chemistry. 2012. Vol. 190. P. 285—295.
26. Zhu Q., Yang J., Wang J., Li S., Wang H. // J. Natural Gas Chemistry. 2003. Vol. 12. P. 23—30.
27. Xia P., Chen Y.Q., Shen J.J., Li Z.Q. // J. Alloys and Compounds. 2008. Vol. 453. P. 185—190.
28. Knabbaz S., Honarbakhsh-Raouf A., Araie A., Saghafi M. // Int. Journal of Refractory Metals and Hard Materials. 2013. in Press.
29. Linares C.E., Lopez J., Scaffidi A., Scott C.E. // Applied Catalysis A: General. 2005. Vol. 292. P. 113—117.
30. Пат. 2388689 (РФ). Способ получения карбида вольфрама W2C / Молчанов В.В, Гойдин В.В. 2008.
31. Аввакумов Е.Г. Механические методы активации химических процессов. Новосибирск: Наука, 1986.
32. Княжева О.А., Бакланова О.Н., Лавренов А.В., Дроздов В.А., Леонтьева Н.Н., Тренихин М.В., Арбузов А.Б., Лихолобов В.А. // Кинетика и катализ. 2011. Т. 52. № 6. С. 910—919.
33. Bej S.K., Benett C.A., Thompson L.T. // Applied Catalysis A: General. 2003. Vol. 250. P. 197—208.
34. Bartos R., Solymost F. // J. Catalysis. 2005. Vol. 235. P. 60—68.
35. Сurtis C.W., Chen J.H., Tang Y. // Energy&Fuels. 1995. Vol. 9, № 2. P. 205—221.
Review
For citations:
Vasiljevich A.V., Baklanova O.N., Lavrenov A.V., Knyazheva O.A., Gulyaeva T.I., Trenihin M.V., Likholobov V.A. Synthesis and study of massive molybdenum carbides and supported carbide containing catalyst composition Мо2С/С, obtained by mechanical activation. Kataliz v promyshlennosti. 2013;(6):21-29. (In Russ.)