

Catalytic oxidation of soot in conditions of «weak» contact in the presence of M/Ce0,72Zr0,18Pr0,1O2, where M – platinum, palladium, ruthenium
Abstract
Nanoparticulate catalysts M/Ce0,72Zr0,18Pr0,1O2, where M – Pt, Pd, Ru at 0,5; 1,0 and 2,0 wt.%, for diesel exhaust soot afterburning in a «weak» contact were synthesized. Structural, textural and catalytic properties of the samples were studied using EDX, X-ray synchrotron diffraction, XANES, EXAFS, TEM, low-temperature nitrogen adsorption and TG-DSC. It is shown that in the process of impregnating of platinum metals on the surface of the support Ce0,72Zr0,18Pr0,1O2, metal-support interaction occurs and increases in a line Pt → Pd → Ru. Ruthenium-ontaining catalysts are the most active in the soot afterburning, not only due to the nature of the supported component, but relatively faint metal-support interaction as compared with platinum and palladium samples. For them it is characterized the reduction of start oxidation temperature on 190 °C and lowering the temperature of complete oxidation approximately on 120 °C compared with the same parameters for the support without platinum. Due to the high activity of 0,5%Ru/Ce0,72Zr0,18Pr0,1O2 the opportunity for effective cleaning of diesel soot emissions are created by using relatively small amounts of the precious metal, which will reduce the cost of catalytic converters of diesel emissions.
About the Authors
A. V. MalutinRussian Federation
E. J. Liberman
Russian Federation
A. I. Mikhailichenko
Russian Federation
Ya. V. Zubavichus
Russian Federation
V. Yu. Murzin
Russian Federation
A. G. Koshkin
Russian Federation
V. A. Dyakonov
Russian Federation
E. N. Filatov
Russian Federation
T. V. Kon’kova
Russian Federation
References
1. Steenland K., Deddens J., Stayner L. Diesel exhaust and lung cancer in the trucking industry: Exposure—response analyses and risk assessment // Am. J. Ind. Med. 1998. Vol. 34. P. 220.
2. International Agency for Research on Cancer. IARC: Diesel Engine Exhaust Carcinogenic. (Press Release No. 213), 2012.
3. Grigorieva A.V., Goodilin E.A., Derlyukova L.E., Anufrieva T.A., Tarasov A.B., Dobrovolskii Y.A., Tretyakov Y.D. Titania nanotubes supported platinum catalyst in CO oxidation process // Appl. Catal. A: General. 2009. Vol. 362. P. 20
4. Малютин А.В., Либерман Е.Ю., Михайличенко А.И., Аветисов И.Х., Кошкин А.Г., Конькова Т.В. Каталитическая активность нанодисперсных твердых растворов M0,1Zr0,18Ce0,72O2, где М — РЗМ в реакции окисления монооксида углерода // Катализ в промышленности. 2013. № 3. С. 54—59.
5. Reyes P., Konig M.E., Pecchi G., Concha I., Lopez Granados M., Fierro J.L.G. O-xylene hydrogenation on supported ruthenium catalysts // Catal. Lett. 1997. Vol. 46. P. 71.
6. Gandao Z., Coq B., Menorval L.C., Tichit D. Comparative behavior of extremely dispersed Pt/Mg(Al)O and t/Al2O3 for the chemisorption of hydrogen, CO and CO2. // Applied Catalysis A. 1996. Vol. 147. P. 395—406.
7. Велигжанин А.А., Зубавичус Я.В., Чернышов А.А., Тригуб А.Л., Хлебников А.С., Низовский А.И., Худорожков А.К., Бекк И.Э., Бухтияров В.И. In situ ячейка для исследования структуры катализаторов с использованием синхротронного излучения // Журнал структурной химии. 2010. Т. 51. С. 26—32.
8. Ravel B. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT /
9. B. Ravel, M. Newville // J. Synchrotron rad. 2005. Vol. 12. P. 537.
10. Ankudinov A.L. Real-space multiple-scattering calculation of XANES // Phys. rev. B. 1998. Vol. 58. P. 7565.
11. Zhang F., Jin Q., Chan S.W. Ceria nanoparticles: Size, size distribution, and shape // J. Appl. Phys. 2004. Vol. 95. P. 4319.
12. Nagai Y., Hirabayashi T., Dohmae K., Takagi N., Minami T., Shinjoh H., Matsumoto S. Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide—support interaction // Journal of Catalysis. 2006. Vol. 242. P.103—109.
13. Bera P., Patil K.C., Jayaram V., Subbanna G.N., Hegde M.S. Ionic Dispersion of Pt and Pd on CeO2 by Combustion Method: Effect of Metal—Ceria Interaction on Catalytic Activities for NO Reduction and CO and Hydrocarbon Oxidation // Journal of Catalysis. 2000. Vol. 196. P. 293—301.
14. Wong J., Lytle F. W., Messmer R.P., Maylotte D.H. K-edge absorption spectra of selected vanadium compounds // Physical Review B. 1984. Vol. 30. P. 5596.
15. Arcon I., Mirtic B., Kodre A. Determination of Valence States of Chromium in Calcium Chromates by Using -ray Absorption Near-Edge Structure (XANES) Spectroscopy (pages 222—224) // Journal of the American Ceramic Society. 1998. Vol. 81. P. 222.
16. Pantelouris A., Modrow H., Pantelouris M., Hormes J., Reinen D. The influence of coordination geometry and valency on the K-edge absorption near edge spectra of selected chromium compounds // Chemical Physics. 2004. Vol. 300. P. 13.
17. Iztok Arcon, Andreja Bencan, Alojz Kodre, Marija Kosec. X-ray absorption spectroscopy analysis of Ru in La2RuO5 // X-Ray Spectrometry. 2007. Vol. 36. P. 301—304.
18. Bearden J.A., Burr A.F. Reevaluation of X-Ray Atomic Energy Levels // Rev. Mod. Phys. 1967. Vol. 39. P. 125—142.
19. Yoshida H., Nonoyama S., Yazawa Y., Hattori T. Quantitative Determination of Platinum Oxidation State by XANES Analysis // Physica Scripta. 2005. Vol. T. 115. P. 813—815.
20. Matthew D. Hall, Garry J. Foran, Mei Zhang, Philip J. Beale, Trevor W. Hambley. XANES Determination of the Platinum Oxidation State Distribution in Cancer Cells Treated with Platinum(IV) Anticancer Agents // J. Am. Chem. Soc. 2003. Vol. 125. P. 7524—7525.
21. Bera P., Priolkar K.R., Gayen A., Sarode P.R., Hegde M.S., Emura S., Kumashiro R., Jayaram V., Subbanna G.N. Ionic Dispersion of Pt over CeO2 by the Combustion Method: Structural Investigation by XRD, TEM, XPS, and EXAFS // Chem. Mater. 2003. Vol. 15. P. 2049—2060.
22. Takeguchi T., Manabe S., Kikuchi R., Eguchi K., Kanazawa T., Matsumoto S., Ueda W. Determination of dispersion of precious metals on CeO2-containing supports // Applied Catalysis A: General. 2005. Vol. 293. P. 91—96.
23. Гуляев Р.В. Взаимодействие палладия с поверхностью церий-содержащих носителей и роль поверхностных фаз в реакции окисления СО// Автореф. дис. … канд. хим. наук. Новосибирск, 2010.
24. Vargas E., Simakov A., Rangel R., Castillуn F. CO oxidation over Ce-Ru-O catalysts // 20th North American Catalysis Meeting. Houston. Texas. 2007.
25. Singh P., Hegde M.S. Ce1–xRuxO2–д (x = 0.05, 0.10): A New High Oxygen Storage Material and Pt, Pd-Free Three-Way Catalyst // Chem. Mater. 2009. Vol. 21. P. 3337.
26. Hosokawa S., Taniguchi M., Utani K., Kanai H., Imamura S. Affnity order among noble metals and CeO2 // Applied Catalysis A: General. 2005. Vol. 289. P. 115—120.
27. Ауад С., Сааб Е., Аби-Афд Е., Абукаис А. Окисление сажи и летучих органических веществ на рутенийцериевых катализаторах // Кинетика и катализ. 2007. Т. 48. № 6. С. 893—898.
28. Aouad S., Abi-Aad E., Aboukais A. Simultaneous oxidation of carbon black and volatile organic compounds over Ru/CeO2 catalysts // Appl. Catal. B: Environmental. 2009. Vol. 88. P. 249.
29. Залетова Н.В., Туракулова А.О., Кунцев C.В., Лунин В.В. // Вестник Московского университета. Серия 2. Химия. 2009. Т. 50. № 1. С. 3.
Review
For citations:
Malutin A.V., Liberman E.J., Mikhailichenko A.I., Zubavichus Ya.V., Murzin V.Yu., Koshkin A.G., Dyakonov V.A., Filatov E.N., Kon’kova T.V. Catalytic oxidation of soot in conditions of «weak» contact in the presence of M/Ce0,72Zr0,18Pr0,1O2, where M – platinum, palladium, ruthenium. Kataliz v promyshlennosti. 2014;(1):33-41. (In Russ.)