Preview

Катализ в промышленности

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

КАТАЛИТИЧЕСКОЕ СНИЖЕНИЕ АВТОМОБИЛЬНЫХ ВЫБРОСОВ СО ПРИ ХОЛОДНОМ ЗАПУСКЕ ДВИГАТЕЛЯ

Аннотация

Выбросы транспортных средств являются основным источником CO – одного из самых ядовитых газов. Он не только вредно влияет на человека и растительность, но также загрязняет окружающую среду и косвенно способствует глобальному потеплению. В фазе холодного старта двигателя выброс СО увеличивается на 60–80 %, даже если автомобиль оснащен TWC. Таким образом, задача устройств, регулирующих выбросы бензинового автомобиля, заключается в снижении выбросов CO до уровня ниже 1,0 г/км. В данной работе катализатор Au-CuCe/γ-Al2O3 был испытан на активность в окислении СО и продолжительность срока службы. Катализатор был приготовлен методом пропитки по влагоемкости и прокален при 600 °С. Удельная площадь поверхности катализатора, определенная по адсорбции азота методом БЭТ, составила 103,48 м2/г, размер пор 28,664 нм, объем пор 0,07 см3/г. Дифракционная картина катализатора подтвердила преобладание флюоритной структуры CeO2 кристаллов в аморфном состоянии, а также показала присутствие кристаллов CuO теноритной фазы. В аморфном состоянии наблюдался также очень небольшой пик от наноразмерного Au. XPS исследования показали сосуществование в катализаторе Ce3+/Ce4+. Медь в форме Cu(I), Cu(II) в октаэдрических позициях и Cu(II) в тетраэдрических позициях соответственно наблюдалась наряду с Cu+ и Ce3+. Также был обнаружен типичный пик Au. Полная конверсия СО наблюдалась около 80 °C. Для определения продолжительности срока службы катализатор был прокален при 800 °С, конверсию на нем измеряли в течение 50 ч непрерывной работы, дезактивация катализатора не наблюдалась. Благодаря низкой стоимости и доступности Au-CuCe/γ-Al2O3 может быть рекомендован для использования в качестве катализатора окисления автомобильных выхлопных газов при температуре холодного запуска двигателя.

Об авторах

Пратичи Сингх
Отделение химического машиностроения и технологии, Индийский институт технологии, г. Варанаси
Россия


Рам Прасад
Отделение химического машиностроения и технологии, Индийский институт технологии, г. Варанаси
Россия


Список литературы

1. Shinjoh H. // Catal. Surv. Asia. 2009. Vol. 13. P. 184—190.

2. Heck R.M., Farrauto R.J. // Appl. Catal. A: Gen. 2001. Vol. 221. P. 443—457.

3. Gandhi H.S., Graham G.W., McCabe R.W. // J. Catal. 2003. Vol. 216. P. 433—442.

4. Suresh Y., Sailaja Devi M.M., Manjari V., Das U.N. // Environ. Pollut. 2000. Vol. 109. P. 321—325.

5. Peters A., Liu E., Verier R.I. et al. // Epidemiology. 2000. Vol. 11. P. 11—17.

6. Vehicular exhaust: environmental standards [Electronic resource] // CPCB (Central Pollution Control Board, Ministry of Environment & Forests, India): [site]. URL: http://cpcb.nic.in (last accesses on 24.03.2012). Acres G.J.K., Harrison B. // Top. Catal. 2004. Vol. 28. P. 3—11.

7. Labhsetwar N., Biniwale R.B., Kumar R., Rayalu S., Devotta S. // Catal. Surv. Asia. 2006. Vol. 10, № 1. P. 55—64.

8. Hu T., Wei Y., Liu S., Zhou L. // Energy & Fuels. 2007. Vol. 21. P. 171—175.

9. Weilenmann M., Soltic P., Saxer C., Forss A.-M., Heeb N. // Atmos. Environ. 2005. Vol. 39. P. 2433—2441.

10. Solov’ev S.A., Orlik S.N. // Kinet. Catal. 2009. Vol. 50. P. 705—714.

11. Prasad R., Rattan G. // Bull. Chem. React. Eng. Catal. 2009. Vol. 4, № 1. P. 5—9.

12. Harrison P.G., Ball I.K., Azelee W., Daniell W., Goldfarb D. // Chem. Mater. 2000. Vol. 12. P. 3715—3725.

13. Huber F., Venvik H., Rønning M., Walmsley J., Holmen A. // Chem. Eng. J. 2008. Vol. 137, № 3. P. 686—702.

14. Denkwitz Y., Schumacher B., Kučerová G., Behm R.J. // J. Catal. 2009. Vol. 267, № 1. P. 78—88.

15. Haruta M. // Catal. Today. 1997. Vol. 36. P. 153—166.

16. Mellor J.R., Palazov A.N., Grigorova B.S., Greyling J.F., Reddy K., Letsoalo M.P., Marsh J.H. // Catal. Today. 2002. Vol. 72. P. 145—156.

17. Haruta M. // J. New Mater. Electrochem. Systems. 2004. Vol. 7. P. 163—172.

18. Dekkers M.A.P., Lippits M.J., Nieuwenhuys B.E. // Catal. Today. 1999. Vol. 54, p. 381—390.

19. Hutchings G.J. // Catal. Today. 2005. Vol. 100. P. 55—61.

20. Grisel R.J.H., Nieuwenhuys B.E. // J. Catal., 2001. Vol. 199. Р. 48.

21. Grisel R.J.H., Weststrate C.J., Goossens A., Crajé M.W.J., van der Kraan A.M., Nieuwenhuys B.E. // Catal. Today. 2002. Vol. 72. P. 123—132.

22. Gluhoi A.C., Lin S.D., Nieuwenhuys B.E. // Catal. Today. 2004. Vol. 90. P. 175—181.

23. Arena F., Famulari P., Trunfio G., Bonura G., Frusteri F., Spadaro L. // Appl. Catal. B: Environ. 2006. Vol. 66. P. 81—91.

24. Qin J., Lu J., Cao M., Hu C. // Nanoscale. 2010. Vol. 2. P. 2739—2743.

25. Jin L.-y., He M., Lu J.-q., Luo M.-f., Fang P., Xie Y.-l. // Chin. J. Chem. Phys. 2007. Vol. 20. P. 582—586.

26. Venezia A.M., Longo A., Casaletto M.P., Liotta F.L., Deganello G., Pantaleo G., Di Carlo G. // J. Phys. Chem.

27. B. 2005. Vol. 109. P. 2821—2827.

28. Sangeetha P., Chen Y.-W. // Intern. J. Hydrogen Energy. 2009. Vol. 34. P. 7342—7347.

29. Haider P., Grunwaldt J.-D., Seidel R., Baiker A. // J. Catal. 2007. Vol. 250. P. 313—323.

30. Pongstabodee S., Monyanon S., Luengnaruemitchai A. // J. Industr. Eng. Chem. 2012. Vol. 18. P. 1272—1279.

31. Pojanavaraphan C., Luengnaruemitchai A., Gulari E. // Intern. J. Hydrogen Energy. 2013. Vol. 38. P. 1348—1362.

32. Andreeva D., Idakiev V., Tabakova T., Ilieva L., Falaras P., Bourlinos A., Travlos A. // Catal. Today. 2002. Vol. 72. P. 51—57.

33. Epling W.S., Hoflund G.B., Weaver J.F., Tsubota S., Haruta M. // J. Phys. Chem. 1996. Vol. 100. P. 9929—

34.

35. Bera P., Hegde M.S. // Catal. Lett. 2002. Vol. 79. P. 75—81.

36. Pillai U.R., Deevi S. // Appl. Catal. A: Gen. 2006. Vol. 299. P. 266—273.

37. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984): report of IUPAC // Pure Appl. Chem. 1985. Vol. 57. P. 603—619.

38. Su Y., Wang Shuping, Zhang T., Wang Shurong, Zhu B., Cao J., Yuan Z., Zhang S., Huang W., Wu S. // Catal. Lett. 2008. Vol. 124. P. 405—412.

39. Zhang T., Wang S.P., Yu Y., Su Y., Guo X., Wang S.R., Zhang S., Wu S. // Catal. Commun. 2008. Vol. 9. P. 1259— 1264.

40. Zhu J., Gao Q., Chen Z. // Appl. Catal. B: Environ. 2008. Vol. 81. P. 236—243.

41. Polster C.S., Nair H., Baertsch C.D. // J. Catal. 2009. Vol. 266. P. 308—319.

42. Tavares A.C., Cartaxo M.A.M., Da Silva Pereira M.I., Costa F.M. // J. Electroanal. Chem. 1999. Vol. 464. P. 187—197.

43. Fradette N., Marsan B. // J. Electrochem. Soc. 1998. Vol. 145. P. 2320—2327.

44. Li G.H., Dai L.Z., Lu D.S., Peng S.Y. // J. Solid State Chem. 1990. Vol. 89. P. 167—173.

45. Liu W., Flytzani-Stephanopoulos M. // J. Catal. 1995. Vol. 153. P. 304—316.

46. Ko E.-Y., Park E.D., Seo K.W., Lee H.C., Lee D., Kim S. // Catal. Today. 2006. Vol. 116, № 3. P. 377—383.


Рецензия

Для цитирования:


Сингх П., Прасад Р. КАТАЛИТИЧЕСКОЕ СНИЖЕНИЕ АВТОМОБИЛЬНЫХ ВЫБРОСОВ СО ПРИ ХОЛОДНОМ ЗАПУСКЕ ДВИГАТЕЛЯ. Катализ в промышленности. 2014;(1):42-48.

For citation:


Pratichi S., Prasad R. Catalytic Abatement of Cold-Start Vehicular CO Emissions. Kataliz v promyshlennosti. 2014;(1):42-48. (In Russ.)

Просмотров: 703


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)