Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Catalytic Abatement of Cold-Start Vehicular CO Emissions

Abstract

Vehicle emissions are the major contributor of one of the most poisonous gas, CO. It not only affects human beings and vegetation but also affect environment. It indirectly contributes to global warming. Cold-start phase aggravates its emission to about 60–80 % even if the vehicle is equipped with a TWC. Thus, the target of the emission regulation bodies is to reduce CO emissions below 1,0 g/km from petrol-driven car. In this paper, the CO oxidation activity
and durability of Au-CuCe/γ-Al2O3 catalyst were tested. The catalyst was prepared by wet impregnation method and calcined at 600 °C. Characterization of the catalyst by N2 adsorption showed a BET surface area 103,48 m2/g, pore size 28,664 nm and pore volume 0,07 cm3/g. The XRD pattern of the catalyst confirmed the dominance of fluorite structure of CeO2 crystals in amorphous state and also exhibited the presence of CuO crystals of tenorite phase. Very small peak of nanosize Au was also observed in amorphous state. XPS studies showed the coexistence of Ce3+/Ce4+ in the catalyst. Copper in the form of Cu(I), Cu(II) in octahedral sites and Cu(II) in tetrahedral sites respectively was observed along with the existence of Cu+ and Ce3+. A typical peak of Au was also found. Total CO conversion was found around 80 °C. For durability test catalyst was calcined at 800 °C and CO conversion was measured for the 50 hour continuous run during which catalyst did not showed deactivation. Low cost and easy availability of Au-CuCe/γ-Al2O3 might advocate for its use as a catalyst for CO oxidation in vehicular exhaust at cold-start temperature.

About the Authors

Singh Pratichi
Department of Chemical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Republic of India
Russian Federation
M.Sc., Research Scholar of Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi-221005, India. Ph: +91 9389519969


Ram Prasad
Department of Chemical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Republic of India
Russian Federation

Ph.D., Professor of the same department. Ph: +91 9415268192.



References

1. Shinjoh H. // Catal. Surv. Asia. 2009. Vol. 13. P. 184—190.

2. Heck R.M., Farrauto R.J. // Appl. Catal. A: Gen. 2001. Vol. 221. P. 443—457.

3. Gandhi H.S., Graham G.W., McCabe R.W. // J. Catal. 2003. Vol. 216. P. 433—442.

4. Suresh Y., Sailaja Devi M.M., Manjari V., Das U.N. // Environ. Pollut. 2000. Vol. 109. P. 321—325.

5. Peters A., Liu E., Verier R.I. et al. // Epidemiology. 2000. Vol. 11. P. 11—17.

6. Vehicular exhaust: environmental standards [Electronic resource] // CPCB (Central Pollution Control Board, Ministry of Environment & Forests, India): [site]. URL: http://cpcb.nic.in (last accesses on 24.03.2012). Acres G.J.K., Harrison B. // Top. Catal. 2004. Vol. 28. P. 3—11.

7. Labhsetwar N., Biniwale R.B., Kumar R., Rayalu S., Devotta S. // Catal. Surv. Asia. 2006. Vol. 10, № 1. P. 55—64.

8. Hu T., Wei Y., Liu S., Zhou L. // Energy & Fuels. 2007. Vol. 21. P. 171—175.

9. Weilenmann M., Soltic P., Saxer C., Forss A.-M., Heeb N. // Atmos. Environ. 2005. Vol. 39. P. 2433—2441.

10. Solov’ev S.A., Orlik S.N. // Kinet. Catal. 2009. Vol. 50. P. 705—714.

11. Prasad R., Rattan G. // Bull. Chem. React. Eng. Catal. 2009. Vol. 4, № 1. P. 5—9.

12. Harrison P.G., Ball I.K., Azelee W., Daniell W., Goldfarb D. // Chem. Mater. 2000. Vol. 12. P. 3715—3725.

13. Huber F., Venvik H., Rønning M., Walmsley J., Holmen A. // Chem. Eng. J. 2008. Vol. 137, № 3. P. 686—702.

14. Denkwitz Y., Schumacher B., Kučerová G., Behm R.J. // J. Catal. 2009. Vol. 267, № 1. P. 78—88.

15. Haruta M. // Catal. Today. 1997. Vol. 36. P. 153—166.

16. Mellor J.R., Palazov A.N., Grigorova B.S., Greyling J.F., Reddy K., Letsoalo M.P., Marsh J.H. // Catal. Today. 2002. Vol. 72. P. 145—156.

17. Haruta M. // J. New Mater. Electrochem. Systems. 2004. Vol. 7. P. 163—172.

18. Dekkers M.A.P., Lippits M.J., Nieuwenhuys B.E. // Catal. Today. 1999. Vol. 54, p. 381—390.

19. Hutchings G.J. // Catal. Today. 2005. Vol. 100. P. 55—61.

20. Grisel R.J.H., Nieuwenhuys B.E. // J. Catal., 2001. Vol. 199. Р. 48.

21. Grisel R.J.H., Weststrate C.J., Goossens A., Crajé M.W.J., van der Kraan A.M., Nieuwenhuys B.E. // Catal. Today. 2002. Vol. 72. P. 123—132.

22. Gluhoi A.C., Lin S.D., Nieuwenhuys B.E. // Catal. Today. 2004. Vol. 90. P. 175—181.

23. Arena F., Famulari P., Trunfio G., Bonura G., Frusteri F., Spadaro L. // Appl. Catal. B: Environ. 2006. Vol. 66. P. 81—91.

24. Qin J., Lu J., Cao M., Hu C. // Nanoscale. 2010. Vol. 2. P. 2739—2743.

25. Jin L.-y., He M., Lu J.-q., Luo M.-f., Fang P., Xie Y.-l. // Chin. J. Chem. Phys. 2007. Vol. 20. P. 582—586.

26. Venezia A.M., Longo A., Casaletto M.P., Liotta F.L., Deganello G., Pantaleo G., Di Carlo G. // J. Phys. Chem.

27. B. 2005. Vol. 109. P. 2821—2827.

28. Sangeetha P., Chen Y.-W. // Intern. J. Hydrogen Energy. 2009. Vol. 34. P. 7342—7347.

29. Haider P., Grunwaldt J.-D., Seidel R., Baiker A. // J. Catal. 2007. Vol. 250. P. 313—323.

30. Pongstabodee S., Monyanon S., Luengnaruemitchai A. // J. Industr. Eng. Chem. 2012. Vol. 18. P. 1272—1279.

31. Pojanavaraphan C., Luengnaruemitchai A., Gulari E. // Intern. J. Hydrogen Energy. 2013. Vol. 38. P. 1348—1362.

32. Andreeva D., Idakiev V., Tabakova T., Ilieva L., Falaras P., Bourlinos A., Travlos A. // Catal. Today. 2002. Vol. 72. P. 51—57.

33. Epling W.S., Hoflund G.B., Weaver J.F., Tsubota S., Haruta M. // J. Phys. Chem. 1996. Vol. 100. P. 9929—

34.

35. Bera P., Hegde M.S. // Catal. Lett. 2002. Vol. 79. P. 75—81.

36. Pillai U.R., Deevi S. // Appl. Catal. A: Gen. 2006. Vol. 299. P. 266—273.

37. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984): report of IUPAC // Pure Appl. Chem. 1985. Vol. 57. P. 603—619.

38. Su Y., Wang Shuping, Zhang T., Wang Shurong, Zhu B., Cao J., Yuan Z., Zhang S., Huang W., Wu S. // Catal. Lett. 2008. Vol. 124. P. 405—412.

39. Zhang T., Wang S.P., Yu Y., Su Y., Guo X., Wang S.R., Zhang S., Wu S. // Catal. Commun. 2008. Vol. 9. P. 1259— 1264.

40. Zhu J., Gao Q., Chen Z. // Appl. Catal. B: Environ. 2008. Vol. 81. P. 236—243.

41. Polster C.S., Nair H., Baertsch C.D. // J. Catal. 2009. Vol. 266. P. 308—319.

42. Tavares A.C., Cartaxo M.A.M., Da Silva Pereira M.I., Costa F.M. // J. Electroanal. Chem. 1999. Vol. 464. P. 187—197.

43. Fradette N., Marsan B. // J. Electrochem. Soc. 1998. Vol. 145. P. 2320—2327.

44. Li G.H., Dai L.Z., Lu D.S., Peng S.Y. // J. Solid State Chem. 1990. Vol. 89. P. 167—173.

45. Liu W., Flytzani-Stephanopoulos M. // J. Catal. 1995. Vol. 153. P. 304—316.

46. Ko E.-Y., Park E.D., Seo K.W., Lee H.C., Lee D., Kim S. // Catal. Today. 2006. Vol. 116, № 3. P. 377—383.


Review

For citations:


Pratichi S., Prasad R. Catalytic Abatement of Cold-Start Vehicular CO Emissions. Kataliz v promyshlennosti. 2014;(1):42-48. (In Russ.)

Views: 709


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)