Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Influence of thermal recovery modes on the formation, stability and catalytic properties of polymer-stabilized palladium nanoparticles in the reaction of selective hydrogenation of acetylenic alcohols

Abstract

Thermal destruction of palladium acetate at temperatures ranging from 200 to 325 °C in an industrial hypercrosslinked polystyrene MN-270 was investigated by TGA and XPS and described in this article. The studies have shown that the palladium acetate distributed into hypercrosslinked polystyrene collapses with forming of metal palladium at lower temperatures than the pure salt powder. The formation and stabilization of palladium clusters Pd7–Pd10 and their partial aggregation with the formation of palladium nanoparticles happens during the of destruction. The catalytic testing of obtained systems in the selective hydrogenation of the triple bond dimethyl-ethynyl carbinol in toluene at 90 °C showed their considerable superiority in activity and selectivity in comparison with a commercial Lindlyar catalyst: TOF increase more than doubled when the selectivity 97,8 %.

About the Authors

A. V. Bykov
Тверской государственный технический университет
Russian Federation


L. J. Nikoshvili
Тверской государственный технический университет
Russian Federation


N. A. Lyubimova
Тверской государственный технический университет
Russian Federation


K. P. Komar
Тверской государственный технический университет
Russian Federation


References

1. Thomas J.M., Thomas W.J. (Eds.), Principles and Practice of Heterogeneous Catalysis, VCH, Weinheim, 1997.

2. Chen M.S., Goodman D.W. // Science 306 (2004) 252. Freund H.-J. // Top. Catal. 48 (2008) 137.

3. Frank M., Baumer M. // Phys. Chem. Chem. Phys. 2 (2000) 3723.

4. Baron M., Bondarchuk O., Stacchiola D., Shaikhutdinov S., Freund H.J. // J. Phys. Chem. C 113 (2009) 6042.

5. Eppler A.S., Rupprechter G., Guczi L., Somorjai G.A. // J. Phys. Chem. B 101 (1997) 9973.

6. Johanek V., Laurin M., Hoffmann J., Schauermann S., Grant A.W., Kasemo B., Libuda J., Freund H.J. // Surf. Sci. 561 (2004) L 218.

7. Somorjai G.A. // Appl. Surf. Sci. 121 (1997) 1.

8. Song Z., Hrbek J., Osgood R. // Nano Lett. 5 (2005) 1327.

9. Gross E., Asscher M., Lundwall M., Goodman D.W. // J Phys. Chem. C 111 (2007) 16197.

10. King J.S., Wittstock A., Biener J., Kucheyev S.O., Wang Y.M., Baumann T.F., Giri S., Hamza A.V., Baeumer M., Bent S.F. // Nano Lett. (2008) 2405.

11. Benz L., Tong X., Kemper P., Lilach Y., Kolmakov A., Metiu H., Bowers M.T., Buratto S.K. // J. Chem. Phys. 122 (2005) 081102.

12. Tong X., Benz L., Kemper P., Metiu H., Bowers M.T., Buratto S.K. // J. Am. Chem. Soc. 127 (2005) 13516.

13. Baeck S.H., Jaramillo T.F., Stucky G.D., McFarland E.W. // Nano Lett. 2 (2002) 831.

14. Baeck S.H., Jaramillo T.F., Kleinman-Shwarsetein A., McFarland E.W. // Meas. Sci. Technol. 16 (2005) 54.

15. Zoval J.V., Lee J., Gorer S., Penner R.M. // J. Phys. Chem. B 102 (1998) 1166.

16. Stiger R.M., Gorer S., Craft B., Penner R.M. // Langmuir 15 (1999) 790.

17. Zhang L., Fang Z., Zhao G.C., Wei X.W. // Int. J. Electrochem. Sci. 3 (2008) 746.

18. Narayanan R., El-Sayed M.A. // J. Phys. Chem. B 108 (2004) 5726.

19. Yamamuro S., Sumiyama K. // Chem. Phys. Lett. 418 (2006) 166.

20. Haruta M. // Catal. Today 36 (1997) 153.

21. Hutchings G.J. // Gold Bull. 37 (2004) 3.

22. Akita T., Okumura M., Tanaka K., Tsubota S., Haruta M. //J. Electron Microsc. 52 (2003) 119.

23. Ichikawa M. in: H.P.D.D. Eley, P.B. Weisz (Eds.), Advances in Catalysis, Academic Press Inc, San Diego, 1992.

24. Cuenya B.R. // Thin Solid Films 518 (2010) 3127—3150.

25. Kiwi-Minsker L., Crespo-Quesada M. // Top. Catal. 55 (2012) 486.

26. Heiz U., Sanchez A., Abbet S., Schneider W.-D. // Chem. Phys. 262 (2000) 189.

27. Haruta M., Kobayashi T., Sano H., Yamada N. // Chem. Lett. (1987) 405.

28. Haruta M. // J. New Mater. Electrochem. Syst. 7 (2004) 163.

29. Valden M., Lai X., Goodman D.W. // Science 281 (1998) 1647.

30. Jaramillo T.F., Baeck S.H., Roldan Cuenya B., McFarland E.W. // J. Am. Chem. Soc. 125 (2003) 7148.

31. Campbell C.T., Parker S.C., Starr D.E. // Science 298 (2002) 811.

32. Lee S., Fan C., Wu T., Anderson S. // J. Am. Chem. Soc. 126 (2004) 5682.

33. Shaikhutdinov S.K., Meyer R., Naschitzki M., Baumer M., Freund H.J. // Catal. Lett. 86 (2003) 211.

34. Bronstein L.M., Goerigk G., Kostylev M., Pink M., Khotina I.A., Valetsky P.M., Matveeva V.G., Sulman E.M., Sulman M. G., Bykov A.V., Lakina N.V., Spontak R.J. // J. Phys. Chem. B 108 (2004) 18234—18242.

35. Bronstein L.M., Matveeva V.G., Sulman E.M. Nanoparticulate Catalysts Based on Nanostructured Polymers. Nanoparticles and Catalysis (Ed.: D. Astru ), Wiley-VCH GmbH & Co. KgaA, Weinheim (2007) 93—127.

36. Бронштейн Л.М., Сидоров С.Н., Валецкий П.М. Наноструктурированные полимерные системы как нанореакторы для формирования наночастиц // Успехи химии. 2004. 73. С. 542—557.

37. Semagina N.V., Sulman E.M., Matveeva V.G., Bykov A.V., Sidorov S.N., Dubrovina L.V., Valetsky P.M., Kiselyova O.I., Khokhlov A.R., Stein B., Bronstein L.M. // Journal of Molecular Catalysis A: Chemical. 208 Iss 1—2 (2004) 273—284.

38. Croy J. R., Mostafa S., Hickman L., Heinrich H., Cuenya B.R. // J. Appl. Catal. A, 350 (2008) 207—216.

39. Ono L.K., Sudfeld D., Roldan Cuenya B. // Surf. Sci., 600, (2006) 5041—5050.

40. Wu T., Kaden W.E., Kunkel W.A., Anderson S.L. // Surface Science 603 (2009) 2764—2770.

41. Shaikhutdinov S., Heemeier M., Hoffmann J., Meusel I., Richter B., Baumer M., Kuhlenbeck H., Libuda J., Freund H.-J., Oldman R., Jackson S.D., Konvicka C., Schmid M., Varga P. // Surf. Sci. 501 (2002) 270.

42. Penner S., Bera P., Pedersen S., Ngo L.T., Harris J.J.W., Charles T. Campbell // J. Phys. Chem. B 110 (2006)

43. —24584.

44. Wertheim G.K., DiCenzo S.B., Youngquist S.E. // Phys. Rev. Lett. 51 (1983) 2310.

45. Wertheim G.K., DiCenzo S.B. // Phys. Rev. B 37 (1988) 844.

46. Kuhrt C., Harsdorff M. // Surf. Sci. 245 (1991) 173.

47. Sulman E.M., Nikoshvili L.Zh., Matveeva V.G., Tyamina I.Yu., Sidorov A.I., Bykov A.V., Demidenko G.N.,

48. Stein B.D., Bronstein L.M. // Top Catal 55 (2012) 492—497.

49. Briggs D. Surface analysis of polymers by XPS and static SIMS // Cambridge University Press,1998. 198 c.

50. Penner N.A., Nesterenko P.N. // Anal. Commun., 1999, 36, 199—201

51. NIST X-ray Photoelectron Spectroscopy Database, Version 3.5 (National Institute of Standards and Technology, Gaithersburg, 2003): http://srdata.nist.gov/xps.

52. Doluda V.Y., Tsvetkova I.B. , Bykov A.V. , Matveeva V.G., Sidorov A.I., Sulman M.G., Valetsky P.M., Stein B.D., Sulman E.M., Bronstein L.M. // Green Process Synth 2 (2013) 25—34.

53. Matveeva V.G., Valetskii P.M., Sul’man M.G., Bronshtein L.M., Sidorov A.I., Doluda V.Yu., Gavrilenko A.V., Nikoshvili L.Zh., Bykov A.V., Grigor’ev M.V., Sul’man E.M. // Catalysis in Industry 3(3) (2011). 260—270.


Review

For citations:


Bykov A.V., Nikoshvili L.J., Lyubimova N.A., Komar K.P. Influence of thermal recovery modes on the formation, stability and catalytic properties of polymer-stabilized palladium nanoparticles in the reaction of selective hydrogenation of acetylenic alcohols. Kataliz v promyshlennosti. 2014;(2):72-79. (In Russ.)

Views: 529


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)