

Production of fatty alcohols by partial hydrodeoxygenation of biodiesel and oleic acid
Abstract
The partial reduction of fatty acid derivatives into corresponding fatty alcohols was studied in static and continuous flow reactors. The experiments with a static reactor showed that obtaining the maximum yield of major products requires a fatty acid as an initial substrate. The experiments in a flow reactor allowed us to determine optimal conditions for the production of alcohols and waxes: temperatures in the range 280–330 °C and pressures from 3,5 to 5,3 MPa. A theoretical scheme of the partial reduction of fatty acids was proposed. The scheme takes into account the target products (fatty alcohols) and all oxygenated side products. A mathematical model describing the scheme was suggested. Rate constants for the main steps of the conversion of oleic acid were determined. The constants may be used to evaluate the distribution of products at various contact times.
About the Authors
V. O. RodinaRussian Federation
S. I. Reshetnikov
Russian Federation
V. A. Yakovlev
Russian Federation
References
1. Noweck K., Grafahrend W. // Ullmann’s Encyclopedia of Industrial Chemistry / Ed. - Wiley-VCH Verlag GmbH & Co. KGaA, 2000.
2. Z, D.P. All about fatty alcohols // 2000.
3. OUTLOOK ’13: Asian fatty alcohol players cautious on a few start-ups //2013.
4. Lurgi Supplies Technology for Fatty Alcohol Plant in Saudi Arabia //2010.
5. Мировой рынок природных жирных спиртов // Евразийский химический рынок. 2009. Т. 51. № 3. С. 50—60.
6. Kreutzer U. // Journal of the American Oil Chemists’ Society. 1984. Vol. 61. № 2. P. 343—348.
7. Voeste T., Buchold H. // Journal of the American Oil Chemists’ Society. 1984. Vol. 61. № 2. P. 350—352.
8. Reuben B., Wittcoff H. // Journal of Chemical Education. 1988. Vol. 65. № 7. P. 605.
9. Matsuhashi H., Miyazaki H., Kawamura Y., Nakamura H., Arata K. // Chemistry of Materials. 2001. Vol. 13. № 9. P. 3038—3042.
10. D., G. Oleochemicals: Fatty alcohol prices climbs on good demand. 2010.
11. De Oliveira K., Pouilloux Y., Barrault J. // Journal of Catalysis. 2001. Vol. 204. № 1. P. 230—237.
12. Pouilloux Y., Piccirilli A., Barrault J. // Journal of Molecular Catalysis A: Chemical. 1996. Vol. 108. № 3. P. 161—166.
13. Miyake T., Makino T., Taniguchi S.-I., Watanuki H., Niki T., Shimizu S., Kojima Y., Sano M. // Applied Catalysis
14. A: General. 2009. Vol. 364. № 1—2. P. 108—112.
15. Toba M., Tanaka S.-I., Niwa S.-I., Mizukami F., Koppány, Z., Guczi L., Cheah K.-Y., Tang T.-S. S. // Applied Catalysis A: General. 1999. Vol. 189. № 2. P. 243—250.
16. Narasimhan C.S., Deshpande V.M., Ramnarayan K. // Applied Catalysis. 1989. Vol. 48. № 1. P. L1—L6.
17. Pouilloux Y., Autin F., Piccirilli A., Guimon C., Barrault J. // Applied Catalysis A: General. 1998. Vol. 169. № 1. P. 65—75.
18. Turek T., Trimm D.L., Cant N.W. // Catalysis Reviews. 1994. Vol. 36. № 4. P. 645—683.
19. Tahara K., Nagahara E., Itoi Y., Nishiyama S., Tsuruya S., Masai M. // Applied Catalysis A: General. 1997. Vol. 154. № 1—2. P. 75—86.
20. Eckstrom H.C. // Journal of Chemical Education. 1963. Vol. 40. № 2. P. A146.
21. Satagopan V., Chandalia S.B. // Journal of Chemical Technology & Biotechnology. 1994. Vol. 59. № 3. P. 257—263.
22. Satagopan V., Chandalia S.B. // Journal of Chemical Technology & Biotechnology. 1994. Vol. 60. № 1. P. 17—21.
23. Kašpar J., Graziani M., Escobar G.P., Trovarelli A. // Journal of Molecular Catalysis. 1992. Vol. 72. № 2. P. 243—251.
24. Mendes M.J., Santos O.A.A., Jordгo E., Silva A.M. // Applied Catalysis A: General. 2001. Vol. 217. № 1—2. P. 253—262.
25. Kluson P., Cerveny L. // Applied Catalysis A: General. 1995. Vol. 128. № 1. P. 13—31.
26. Kluson P., Cerveny L. // Chemicke Listy. 1997. Vol. 91. P. 100—104.
27. Neri G., Donato A., Milone C., Mercadante L., Visco A.M. // Journal of Chemical Technology & Biotechnology. 1994. Vol. 60. № 1. P. 83—88.
28. Coloma F., Sepúlveda-Escribano A., Fierro J.L.G., Rodríguez-Reinoso F. // Applied Catalysis A: General. 1996. Vol. 136. № 2. P. 231—248.
29. Coq B., Kumbhar P.S., Moreau C., Moreau P., Warawdekar M.G. // Journal of Molecular Catalysis. 1993. Vol. 85. № 2. P. 215—228.
30. Tahara K., Tsuji H., Kimura H., Okazaki T., Itoi Y., Nishiyama S., Tsuruya S., Masai M. // Catalysis Today. 1996. Vol. 28. № 3. P. 267—272.
31. Deshpande V.M., Ramnarayan K., Narasimhan C.S. // Journal of Catalysis. 1990. Vol. 121. № 1. P. 174—182.
32. Echeverri D.A., Marín J.M., Restrepo G.M., Rios L.A. // Applied Catalysis A: General. 2009. Vol. 366. № 2. P. 342— 347.
33. Nitta Y., Ueno K., Imanaka T. // Applied Catalysis. 1989. Vol. 56. № 1. P. 9—22.
34. Gallezot P., Richard D. // Catalysis Reviews-science and Engineering. 1998. Vol. 40. № 1—2. P. 81—126.
35. Cheah K.Y., Tang T.S., Mizukami F., Niwa S.-I., Toba M., Choo Y.M. // Journal of the American Oil Chemists’ Society. 1992. Vol. 69. № 5. P. 410—416.
36. Решетников С.И., Парфенова Л.С., Шеплев В.С., Рыжак И.А., Машкин В.Ю., Покровская С.А., Ионе К.Г. // Теоретические основы химической технологии. 1987. Т. 21. № 5. С. 629—635.
Review
For citations:
Rodina V.O., Reshetnikov S.I., Yakovlev V.A. Production of fatty alcohols by partial hydrodeoxygenation of biodiesel and oleic acid. Kataliz v promyshlennosti. 2014;(4):55-62. (In Russ.)