Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Influence of composition and acidity of supported sulfide catalysts on their activity and stability in hydrodeoxygenation of guaiacol

Abstract

Two series of catalysts were studied: ХMo6HPC/Al2O3 and Со6(CA)-РМо12/support. Catalysts ХMo6HPC/Al2O3 were prepared from heteropoly compounds (HPC) of the Anderson structure with the heteroatom Х = Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Al. Catalysts Со6(CA)-РМо12/support (CA denotes citric acid) were prepared from 12-molybdophosphoric heteropoly acid and cobalt citrate. As a support, the following compounds were tested: Sibunit, Al2O3, carbonized alumina, and aluminas modified with zeolites ZSM-5 or BETA. The supports and catalysts were studied by low-temperature nitrogen adsorption, X-ray diffraction, temperature-programmed desorption of ammonia. Properties of catalysts in hydrodeoxygenation (HDO) of guaiacol were studied in a flow apparatus at 260 °C, 3,0 MPa, a volumetric feed rate of 80 h–1, and a ratio H2/feed = = 500 l/l. The activity of catalysts ХMo6HPC/Al2O3 was found to depend on the type of heteroatom Х: the catalysts with Х = Co, Ni were the most active, while the least active catalysts were those with Х = Cu. It was found that the activity of the catalysts in HDO decreases linearly with an increase in the acidity of the support. It was shown that the lower activity of zeolite-containing catalysts is due to their fast deactivation. The HDO of plant raw material was recommended to be performed with the catalysts supported on carbonized alumina, which showed the highest activity and resistance to deactivation.

About the Authors

P. A. Nikul′shin
Самарский государственный технический университет
Russian Federation


V. A. Sal′nikov
Самарский государственный технический университет
Russian Federation


E. O. Zhilkina
Самарский государственный технический университет
Russian Federation


A. A. Pimerzin
Самарский государственный технический университет
Russian Federation


References

1. Ahmad A.L., Mat Yasin N.H., Derek C.J.C., Lim J.K. // Renewable and Sustainable Energy Reviews. 2011. Vol. 15. P. 584—593.

2. Perego C., Bosetti A. // Microporous and Mesoporous Materials. 2011. Vol. 144 (1—3). P. 28—39.

3. Мамедова Т.А., Андрющенко Н.К., Аскерова Э.Н. // ХТТМ. 2010. № 3. с. 8—11.

4. Holmgren J., Gosling C., Marinangell G. // Нефтегазовые технологии. 2006. Vol. 1. P. 78—82.

5. Helwani Z., Othman M.R., Aziz N., Fernando W.J.N., Kim J. // Fuel Processing Technology. 2009. Vol. 90.

6. P. 1502—1514.

7. Lappas A.A., Bezergianni S., Vasalos I.A. // Catalysis Today. 2009. Vol. 145. P. 55—62.

8. Demirbas A. // Applied Energy. 2011. Vol. 88. P. 17—28.

9. Bui V.N., Toussaint G., Laurenti D., Mirodatos C., Geantet C. // Catalysis Today. 2009. Vol. 143. P. 172—178.

10. Fogassy G., Thegarid N., Toussaint G., van Veen A., Schuurman Y., Mirodatos C. // Applied Catalysis B: Environmental. 2010. Vol. 96. P. 476—485.

11. Choudhary T.V., Phillips C.B. // Applied Catalysis A: General. 2011. Vol. 397. P. 1—12.

12. Sebos I., Matsoukas A., Apostolopoulos V., Papayannakos N. // Fuel. 2009. Vol. 88. P. 145—149.

13. Bezergianni S., Kalogianni A., Vasalos I.A. // Bioresource Technology. 2009. Vol. 100. P. 3036—3042.

14. Furimsky E. // Applied Catalysis A: General. 2000. Vol. 199. P. 147—190.

15. Kubicka D., Horacek J. // Applied Catalysis A: General. 2011. Vol. 394. P. 9—17.

16. Pinheiro A., Hudebine D., Dupassieux N., Geantet C. // Energy&Fuels. 2009. Vol. 23. P. 1007—1014.

17. Centeno A., Laurent E., Delmon B. // Journal of Catalysis. 1995. Vol. 154. P. 288—98.

18. Kubicka D., Kaluza L. // Applied Catalysis A: General. 2010. Vol. 372. P. 199—208.

19. Elliott D.C. // Energy & Fuels. 2007. Vol. 21. P. 1792— 1815.

20. Wang W., Yang Y., Luo H., Hu T., Liu W. // Catalysis Communications. 2011. Vol. 12. P. 436—440.

21. Senol O.I., Viljava T.R., Krause A.O.I. // Catalysis Today. 2005. Vol. 106. P. 186—189.

22. Senol O.I., Viljava T.-R., Krause A.O.I. // Catalysis Today. 2005. Vol. 100. P. 331—335.

23. Ryymin E.M., Honkela M.L., Viljava T.R., Krause A.O.I. // Applied Catalysis A: General. 2010. Vol. 389. P. 114—121.

24. Gandarias I., Barrio V.L., Requies J., Arias P.L., Cambra J.F., Guemez M.B. // International Journal of Hydrogen Energy. 2008. P. 3485—3488.

25. Romero Y., Richard F., Brunet S. // Applied Catalysis B: Environmental. 2010. Vol. 98. P. 213—223.

26. Senol O.I., Ryymin E.M., Viljava T.R., Krause A.O.I. // Journal of Molecular Catalysis A: Chemical. 2007. Vol. 277. P. 107—112.

27. Bui V.N., Laurenti D., Afanasiev P., Geantet C. // Applied Catalysis B: Environmental. 2011. Vol. 101. P. 239—245.

28. Bui V.N., Laurenti D., Delichere P., Geantet C. // Applied Catalysis B: Environmental. 2011. Vol. 101. P. 246—255.

29. Yunquan Y., Hean L., Gangsheng T., Smith K.J., Thian T.C. // Chinese Journal of Chemical Engineering. 2008. Vol. 16. № 5. P. 733—739.

30. Toba M., Abe Y., Kuramochi H., Osako M., Mochizuki T., Yoshimura Y. // Catalysis Today. 2011. Vol. 164.

31. P. 533—537.

32. Echeandia S., Arias P.L., Barrio V.L., Pawelec B., Fierro J.L.G. // Applied Catalysis B: Environmental. 2010.

33. Vol. 101. P. 1—12.

34. Wang L., Shena B., Fang F., Wang F., Tian R., Zhang Z., Cuia L. // Applied Catalysis B: Environmental. 2010.

35. Vol. 101. P. 1—12.

36. Быкова М.В., Булавченко О.А., Ермаков Д.Ю., Лебедев М.Ю., Яковлев В.А., Пармон В.Н. // Катализ в промышленности. 2010. № 5. С. 45—52.

37. Яковлев В.А., Быкова М.В., Хромова С.А. // Катализ в промышленности. 2012. №. 4. С. 48—66.

38. Ardiyanti A.R., Khromova S.A., Venderbosch R.H., Yakovlev V.A., Heeres H.J. // Applied Catalysis B: Environmental. 2012. Vol. 117—118. P. 105—117.

39. Yakovlev V.A., Khromova S.A., Sherstyuk O.V., Dundich V.O., Ermakov D.Yu., Novopashina V.M., Lebedev M.Yu., Bulavchenko O., Parmon V.N. // Catalysis Today. 2009. Vol. 144. P. 362—366.

40. Boda L., Onyestyak G., Soft H., Lonyi F., Valyon J., Thernesz A. // Applied Catalysis A: General. 2010. Vol. 374. P. 158—169.

41. Kubickova I., Snare M., Eranen K., Maki-Arvela P., Murzin D.Yu. // Catalysis Today. 2005. Vol. 106. P. 197—200.

42. Wang Y., Fang Y., He T., Hu H., Wu J. // Catalysis Communications. 2011. Vol. 12. P. 1201—1205.

43. Gutierrez A., Kaila R.K., Honkela M.L., Slioor R., Krause A.O.I. // Catalysis Today. 2009. Vol. 147. P. 239—246.

44. Madsen A.T., Ahmed E.H., Christensen C.H., Fehrmann R., Riisager A. // Fuel. 2011. Vol. 90. P. 3433—

45.

46. Yang R., Wu J., Li X., Zhang X., Zhang Z., Guo J. // Applied Catalysis A: General. 2010. Vol. 383. P. 112—118.

47. Ruiz P.E., Leiva K., Garcia R., Reyes P., Fierro J.L.G., Escalona N. // Applied Catalysis A: General. 2010. Vol. 384. P. 78—83.

48. Sepъlveda С., Leiva K., Garcнa R., Radovic L.R., Ghampson I.T., Desisto W.J., Fierro J.L.G., Escalona N. // Catalysis Today. 2011. Vol. 172. P. 232—239.

49. Zhao H.Y., Li D., Bui P., Oyama S.T. // Applied Catalysis A: General. 2011. Vol. 391. P. 305—310.

50. Ramanathan S., Oyama S.T. // The Journal of Physical Chemistry. 1995. Vol. 99. P. 16365—16372.

51. Томина Н.Н., Никульшин П.А., Пимерзин А.А. // Нефтехимия. 2008. Т. 48. № 2. С. 92—99.

52. Nikulshin P.A., Tomina N.N., Pimerzin A.A., Kucherov A.V., Kogan V.M. // Catalysis Today. 2010. Vol. 149.

53. P. 82—90.

54. Nikulshin P.A., Tomina N.N., Pimerzin A.A., Stakheev A.Yu., Mashkovsky I.S., Kogan V.M. // Applied Catalysis A: General. 2011. Vol. 393. P. 146—152.

55. Nikulshin P.A., Mozhaev A.V., Pimerzin Al.A., Konovalov V.V., Pimerzin A.A. // Fuel. 2012. Vol. 100. P. 24—33.

56. Никульшин П.А., Можаев А.В., Пимерзин Ал.А., Пимерзин А.А. // Нефтегазовое дело. 2012. Т. 10. № 1. С. 140—147.

57. Никульшин П.А., Можаев А.В., Ишутенко Д.И., Минаев П.П., Ляшенко А.И., Пимерзин А.А. // Кинетика

58. и катализ. 2012. Т. 53. № 5. С. 660—672.

59. Никульшин П.А., Можаев А.В., Пимерзин А.А., Томина Н.Н., Коновалов В.В., Коган В.М. // Кинетика и

60. катализ. 2011. Т. 52. № 6. С. 884—898.

61. Можаев А.В., Никульшин П.А., Пимерзин Ал.А., Коновалов В.В., Пимерзин А.А. // Нефтехимия. 2012.

62. Т. 52. № 1. С. 45—54.

63. Nikulshin P.A., Salnikov V.A., Mozhaev A.V., Minaev P.P., Kogan V.M., Pimerzin A.A. // Journal of Catalysis. 2014. Vol. 309. P. 386—396.

64. Olcese R.N., Bettahar M., Petitjean D., Malaman B., Giovanella F., Dufour A. // Applied Catalysis B: Environmental: B. 2012. Vol. 115—116. P. 63—73.

65. Ferrari M., Delmon B., Grange P. // Microporous and Mesoporous Materials. 2002. Vol. 56. P. 279—290.

66. Yin Ch., Liu Ch. // Applied Catalysis A: General. 2004. Vol. 273. P. 177—184.

67. Gong Y., Dou T., Kang S., Li Q., Hu Y. // Fuel processing technology. 2009. Vol. 90. P. 122—129.

68. Thiollier A., Afanasiev P., Delichere P., Vrinat M. // Journal of Catalysis. 2001. Vol. 197. P.58.

69. Сальников В.А., Никульшин П.А., Пимерзин А.А. // Нефтехимия. 2013. Т. 53. № 4. С. 267—279.

70. Chianelli R.R. // Oil & Gas Science and Technology — Rev. IFP. 2006. Vol. 61. № 4. P. 503—513.

71. Nikulshin P.A., Ishutenko D.I., Mozhaev A.A., Pimerzin A.A. // Journal of Catalysis. 2014. Vol. 312. P. 152—169.


Review

For citations:


Nikul′shin P.A., Sal′nikov V.A., Zhilkina E.O., Pimerzin A.A. Influence of composition and acidity of supported sulfide catalysts on their activity and stability in hydrodeoxygenation of guaiacol. Kataliz v promyshlennosti. 2014;(4):63-73. (In Russ.)

Views: 594


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)