Optimization of multiplicity of the catalyst circulation in the reforming reactor with moving granular bed by combination of full-scale and computer simulation
Abstract
When operating the reforming units with continuous catalyst regeneration there is the problem of optimizing the multiplicity of the catalyst circulation in the reactor-regenerator. This problem can be solved with a combination of natural and computer simulation through a study of the formation of coke on the catalyst surface. Based on the results of TGA of the industrial catalyst Pt-Sn/γ-Al2O3 concluded that amorphous coke is formed on the catalyst surface in reforming process, the whose number of coke at the outlet of the reactor block is 4–6 % depending on the composition of need materials and process parameters. The specific surface area of samples (m2/g): for the original – 152, after regeneration – 140, at the outlet of the reactor – 118, which correlates with the amount of coke on the surface of the samples. Mathematical analysis of processes of coke formation in the reforming reactor, a moving granular bed showed that the multiplicity of the catalyst circulation should be maintained in the range 0,008–0,010 m3/m3 to improve the efficiency of industrial plant. Maintaining the optimum conditions in the reactor and regenerator unit will allow to control the coke formation and to maintain the coke concentration on the minimum possible, and specific surface area of the catalyst at the highest possible level.
About the Authors
M. S. GyngazovaRussian Federation
N. V. Chekantsev
Russian Federation
M. V. Korolenko
Russian Federation
E. D. Ivanchina
Russian Federation
A. V. Kravtsov
Russian Federation
References
1. Кирьянов Д.И., Смоликов М.Д., Пашков В.В., Проскура А.Г., Затолокина Е.В., Удрас И.Е., Белый А.С. Современное состояние процесса каталитического риформинга бензиновых фракций. Опыт производства и промышленной эксплуатации катализаторов риформинга серии ПР // Российский химический журнал. № 4. Т. LI. 2007. С. 60—68.
2. Островский Н.М. Кинетика дезактивации катализаторов: Математические модели и их применение. М.: Наука, 2001.
3. Garcia-Dopico M., Garcia A., Garcia A. Santos Modeling coke formation and deactivation in a FCCU//Applied Catalysis A: General 303. Р. 245—250 (2006).
4. Parera J.M., Verderone R.J., Querini C.A. Coking on bifunctional catalysts, in: Delmon B., Froment G.F. (Eds.), Catalyst Deactivation 1987, Elsevier Science Publ B.V., Amsterdam, 1987. Р. 135—146.
5. Praserthdam P., Mongkhonsi T., Kunatippapong S., Jaikaew B., Lim N. Determination of coke deposition on metal active sites of propane dehydrogenation catalysts, in: Bartholomew C.H., Fuentes G.A. (Eds.), Catalyst Deactivation 1997, Elsevier Science Publ B.V., Amsterdam, 1997. Р. 153—158.
6. Afonso J.C., Schmal M., Frety R. The chemistry of coke deposits formed on a Pt-Sn catalyst during ehydrogenation of N-alkanes to mono-olefins, Fuel Process. Technol. 41(1994). Р. 13—25.
7. Baker R.T., Harris P.S. Chemistry and Physics of Carbon, Marcel Dekker, New York, 1978. Р. 83—165.
8. Lin L.W., Zhang T., Zang J.L., Xu Z.S. Dynamic process of carbon deposition on Pt and Pt-Sn catalysts for alkane dehydrogenation // Appl. Catal. 67 (1990). Р. 11—23.
9. Parera J.M., Figoli N.S., Traffano E.M. Catalytic action of platinum on coke burning // J. Catal. 79 (1983). Р. 481— 484.
10. Figoli N.S., Beltramini J.N., Marinelli E.E., Sad M.R., Parera J.M. Operational conditions and coke formation on Pt-Al2O3 reforming catalyst // Appl. Catal. 5 (1983). Р. 19—32.
11. Rebo H.P., Blekkan E.A., Bednarova L., Holmen A. Deactivation of Pt—Sn catalyst in propane dehydrogenation, in: Delmon B., Froment G.F. (Eds.), Catalyst Deactivation 1999, Elsevier Science Publ B.V., Amsterdam. 1999. Р. 333—340.
12. Songbo He, Chenglin Sun, Xu Yang, Bin Wang, Xihai Dai, Ziwu Bai. Characterization of coke deposited on spent catalysts for long-chain-paraffin dehydrogenation // Chemical engineering journal 163 (2010). Р. 389—394.
13. Li C.L., Novaro O., Bokhimi X., Munoz E., Boldu J.L., Wang J.A., Lopez T., Gomez R., Batina N. Coke formation on an industrial reforming Pt-Sn/γ-Al2O3 catalyst Catalysis letters 65 (2000). Р. 209—216.
14. Веселовский В.С. Химическая природа горючих ископаемых. М.: Издательство академии наук СССР, 1955.
15. Гынгазова М.С., Кравцов А.В., Иванчина Э.Д., Короленко М.В., Уваркина Д.Д. Кинетическая модель процесса каталитического риформинга бензинов в реакторах с движущимся слоем катализатора // Катализ в промышленности. 2010. № 6. С. 41—48.
16. Gyngazova M.S., Kravtsov A.V., Ivanchina E.D., Korolenko M.V., Uvarkina D.D. Kinetic Model of the Catalytic Reforming of Gasolines in Moving-Bed Reactors // Catalysis in Industry. 2010. Vol. 2. №. 4. Р. 374—380.
Review
For citations:
Gyngazova M.S., Chekantsev N.V., Korolenko M.V., Ivanchina E.D., Kravtsov A.V. Optimization of multiplicity of the catalyst circulation in the reforming reactor with moving granular bed by combination of full-scale and computer simulation. Kataliz v promyshlennosti. 2012;(2):35-41. (In Russ.)