Preview

Катализ в промышленности

Расширенный поиск

ПОТЕНЦИАЛ ПРИМЕНЕНИЯ МИКРОВОДОРОСЛЕЙ В КАЧЕСТВЕ СЫРЬЯ ДЛЯ БИОЭНЕРГЕТИКИ

Полный текст:

Аннотация

Представлены современные тенденции использования растительных возобновляемых источников энергии. Биомасса микроводорослей рассматривается в качестве наиболее перспективного возобновляемого сырья из-за высокой скорости роста и продуктивности. Успехи, достигнутые в последнее время, позволяют надеяться на создание промышленных процессов производства высокоэнергетической биомассы в ближайшем будущем. Разрабатываемые современные каталитические методы (переэтерификация, гидрокрекинг), позволяют эффективно перерабатывать микроводоросли в биотоплива. При этом для получения высококачественных углеводородов необходимо липиды микроводорослей подвергать: гидролизу для удаления фосфорсодержащих соединений, переэтерификации метанолом на гетерогенных катализаторах, гидродеоксигенации (гидрокрекингу) и изомеризации. Рост числа исследований и многообразие способов переработки микроводорослей позволяет говорить об их большом потенциале в качестве сырья для биоэнергетики.

Об авторах

К. Н. Сорокина
Институт катализа СО РАН, Новосибирск Институт цитологии и генетики СО РАН, Новосибирск
Россия

канд. биол. наук, зав. сектором промышленной микробиологии Института катализа им. Г.К. Борескова СО РАН; Институт цитологии и генетики СО РАН. Тел.: (383) 326-95-86



В. А. Яковлев
Институт катализа СО РАН, Новосибирск Новосибирский государственный университет
Россия

канд. хим. наук, зав. лабораторией каталитических методов переработки возобновляемого сырья того же института. Тел.: (383) 326-96-50



А. В. Пилигаев
Институт катализа СО РАН, Новосибирск Новосибирский государственный университет
Россия

мл. науч. сотрудник Института катализа им. Г.К. Борескова СО РАН



Р. Г. Кукушкин
Институт катализа СО РАН, Новосибирск Новосибирский государственный университет
Россия

мл. науч. сотрудник того же института. Тел.: (383) 326-96-52



С. Е. Пельтек
Институт цитологии и генетики СО РАН, Новосибирск
Россия

канд. биол. наук, зав. лабораторией молекулярных биотехнологий, зам. директора Института цитологии и генетики СО РАН. Тел.: (383) 363-49-97



Н. А. Колчанов
Институт цитологии и генетики СО РАН, Новосибирск Новосибирский государственный университет
Россия

д-р биол. наук, директор того же института. Тел.: (383) 363-49-80



В. Н. Пармон
Институт катализа СО РАН, Новосибирск Новосибирский государственный университет
Россия

д-р хим. наук, директор Института катализа им. Г.К. Борескова СО РАН. Тел.: (383) 330-82-69



Список литературы

1. Klass L. Organic Commodity Chemicals from Biomass. Biomass for Renewable Energy // Fuels and Chemicals. 1998. P. 495—546.

2. Рустамов Н. А., Зайцев С.И., Чернова Н.И. Биомасса — источник энергии // Энергия. 2005. № 6. С. 20— 28.

3. Directive 2009/28/ec of the European parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC // Official Journal of the European Union. 2009. P. 16—62.

4. Pahl G. Biodiesel. Growing a New Energy Economy. — V.: Chelsea Green Publishing, 2010.

5. Бакланова Ю.О. Развитие промышленного производства биоэтанола в России как одно из приоритетных направлений развития альтернативной энергетики // Региональная экономика и управление: электр. науч. журн. 2007. № 4 (12).

6. Chisti Y. Biodiesel from microalgae // Biotechnology Advances. 2007. Vol. 25. P. 294—306.

7. Chisti Y. Biodiesel from microalgae beats bioethanol // Trends Biotechnol. 2008. Vol. 3. P. 126—131.

8. World energy outlook. / Iea Publications. — Тhe Paris: Stedi media, 2007.

9. Shell energy scenarios to 2050 / VMS the Hague: Shell international BV, 2008.

10. Gouveia L.,Oliveira A.C. Microalgae as a raw material for biofuels production // J. Ind Microbiol. Biotechnol. 2009. Vol. 36(2). P. 269—274.

11. Cohen Z. Production of Polyunsaturated Fatty Acids by the Microalga Porphyridium cruentum // Production of Chemicals by Microalgae / Ed. Cohen Z. London: Taylor and Francis, 1999. P. 1—24.

12. McDermid K. J., Stuercke B. Nutritional composition of edible Hawaiian seaweeds // J. Appl. Phycol. 2003. Vol. 15. P. 513—524.

13. Zijffers J.-W. F., Salim S., Janssen M., Tramper J., Wijffels R.H. Capturing sunlight into a photobioreactor: Ray tracing simulations of the propagation of light from capture to distribution into the reactor // Chemical Engineering Journal. 2008. Vol. 145. P. 316—327.

14. Becker, E.W. Microalgae: Biotechnology and microbiology. — USA: Cambridge University Press, 1994.

15. A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae // the National Renewable Energy Laboratory; Benemann, J., Sheehan, J., P. Roessler, T., Dunahay. — USA, CO, Golden, 1998.

16. Metzger P., Largeau C. Botryoccus braunii: a rich source for hydrocarbons and related ether lipids // Appl. Microbiol. Biotechnol. 2005. Vol. 66. P. 486—496.

17. Gouveia L., Marques A.E., da Silva T.L., Reis A. Neochloris oleabundans UTEX #1185: a suitable renewable lipid source for biofuel production // J. Ind. Microbiol. Biotechnol. 2009. Vol. 36(6). P. 821—6.

18. Matsunaga T., Matsumoto M., Maeda Y., Sugiyama H., Sato R., Tanaka T. Characterization of marine microalga, Scenedesmus sp. strain JPCC GA0024 toward biofuel production // Biotechnol Lett. 2009. Vol. 31(9). P. 1367— 1372.

19. Manda, S., Mallick N. Microalga Scenedesmus obliquus as a potential source for biodiesel production // Appl. Microbiol. Biotechnol. 2009. V. 84(2). P. 281—291.

20. Radakovits R., Jinkerson R.E., Darzins A., Posewitz M.C. Genetic Engineering of Algae for Enhanced Biofuel Production Eukaryot Cell. 2010. Vol. 9(4). V. 486—501.

21. Greenwell H.C., Laurens L.M., Shields R.J., Lovitt R.W., Flynn K.J. Placing microalgae on the biofuels priority list: a review of the technological challenges // J. R. Soc. Interface. 2010. Vol. 7(46). P. 703—726.

22. Service R.F. Biofuels: ExxonMobil fuels Venter’s efforts to run vehicles on algae-based oil // Science. Vol. 325. № 5939. P. 379.

23. Hu Q., Sommerfeld M., Jarvis E., Ghirdian M., Posewitz M., Seilbert M., Darzins A. Micoalgal, Triacylglyceols

24. as feedstocks for biofuel production: perspectives and advances // The Plant Journal. 2008. Vol. 54. P. 621—639.

25. Richmond A. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. V.: Blackwell Science. 2003.

26. Rosenberg J.N., Oyler A.G., Wilkinson L., Betenbaugh M.J. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution // Current Opinion in Biotechnology. 2008. Vol. 19. P. 430—436.

27. Douskova I., Doucha J., Livansky K., Machat J., Novak P., Umysova D., Zachleder V., Vitova M. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs // Appl. Microbiol. and Biotechnol. 2009. Vol. 82(1). P. 179—185.

28. Ono E., Cuello J.L. Feasibility Assessment of Microalgal Carbon Dioxide Sequestration. Technology with Photobioreactor and Solar Collector.// Journal of Biosystems Engineering. 2006. Vol. 95(4). P. 597—606.

29. Hsueh H.T., Chu H., Yu S.T. A batch study on the biofixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae // Chemosphere. 2007. Vol. 66. P. 878—886.

30. Ota M., Kato Y., Watanabe H., Watanabe M., Sato Y., Smith R.L., Inomata J.H. Fatty acid production from a

31. highly CO2 tolerant alga, Chlorocuccum littorale, in the presence of inorganic carbon and nitrate // Bioresour Technol. 2009. Vol. 100(21). P. 5237—42

32. Lee J.-S., Kim D.-K., Lee J.-P., Park S.-C., Koh J.-H., Cho H.-S., Kim S.-W. Effects of SO2 and NO on growth

33. of Chlorella sp. KR-1 // Bioresource Technology. 2002. Vol. 82. P. 1—4.

34. Lee J.-Y., Yoo C., Jun S.-Y., Ahn C.-Y., Oh H.-M. Comparison of several methods for effective lipid extraction from microalgae // Bioresource Technology. 2010. V. 101. I. 1. P. S75—S77.

35. Mata T.M., Martins A.A., Caetano N.S. Mechanistic Assessment of Microalgal Lipid Extraction // Industrial and Engineering Chemistry Research. 2010. Vol. 49 I. 6. P. 2979—2985.

36. Mendes F.N.P., Silveira E.R. Fatty acids, sesqui- and diterpenoids from seeds of Dipteryx lacunifera Phytochemistry. 1994. Vol. 35. I. 6. P. 1499—1503.

37. Samorм C., Torri C., Samorм G., Fabbri D., Galletti P., Guerrini F., Pistocchi R., Tagliavini E. Extraction of hydrocarbons from microalga Botryococcus braunii with switchable solvents // Bioresource Technology. 2010. Vol. 101(9). P. 3274—3279.

38. Stucki S., Vogel F., Ludwig C., Haidu A. G., Brandenberger M. Catalytic gasification of algae in supercritical water for biofuel production and carbon capture // Energy Environ. Sci. 2009. Vol. 2. P.535—541.

39. Hallgren A. Theoretical and Engineering Aspects of the Gasification of Biomass. Ph.D. Thesis, / A. Hallgren. Lund University. — Lund, Sweden, 1996.

40. Koningen J., Sjцstrцm K. Sulfur-Deactivated Steam Reforming of Gasified Biomass // Ind. Eng. Chem. Res. 1998. Vol. 37(2). P. 341—346.

41. Tran N.H., Bartlettа J.R., Kannangara G.S.K., Milev A. from micro-algae // Fuel. 2009. Vol. 89. I. 2. P. 265—274.

42. Maher K.D., Bressler D.C. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals // Bioresource Technology. 2007. Vol. 98. 2351—2368.

43. Qi Z., Jie C., Tiejun W., Ying X. Review of biomass pyrolysis oil properties and upgrading research // Energy Conversion and Management. 2007. Vol. 48. P. 87—92.

44. Marcilla A., Gуmez-Siurana A., Gomis C., Chбpul E., Catalб M., Valdйs F.J. Characterization of microalgal species through TGA/FTIR analysis: Application to nannochloropsis sp. // Thermochimica Acta. 2009. Vol. 484. P. 41—47.

45. Lotero E., Liu Y., Lopez D.E., Suwannakaran K., Bruce D.A., Goodwin J.G. Synthesis of biodiesel via acid catalysis // Jr. Ind. Eng. Chem. Res. 2005. Vol. 44. P. 5353—5363.

46. Pinto A. C., Guarieiro L.L.N., Rezende M.J.C., Ribeiro N.M., Torres E.A., Lopes W.A., de P. Pereira P. A., de Andrade J.B. Biodiesel: an overview // J. Braz. Chem. Soc. 2005. Vol. 16. P. 1313—1330.

47. Baroutian S., Aroua M.K., Raman A.A.A., Sulaiman N.M.N.J. Density of Palm Oil-Based Methyl Ester // Chem. Eng. Data. 2008 Vol. 53. P. 877—880.

48. Serio M., Tesser R.L., Pengmei Santacesaria E. Heterogeneous Catalysts for Biodiesel Production // Energy & Fuels. 2008. Vol. 22. P. 207—217.

49. Ma F., Clements L.D., Hanna M.A. Biodiesel Fuel from Animal Fat // Ind. Eng. Chem. Res. 1998. Vol. 37. P. 3768— 3771.

50. Yan S., Kim M., Mohan S., Salley S., Simon Ng,K. Oil transesterification over calcium oxides modified with lanthanum // Applied Catalysis A: General. 2010. Vol. 373. P. 104—111.

51. Miao X. Biodiesel production from heterotrophic microalgal oil // Bioresource Technology. 2006. Vol. 97 P. 841—846.

52. Demirbas A. Production of biofuels from microalgae and microalgae // Energy Educat Sci Technol. 2007. Vol. 18. P. 59—65.

53. Vicente G. Biodiesel production from biomass of an oleaginous fungus // Biochemical Engineering Journal. 2009. Vol. 48. P. 22—27.

54. Gryglewicz S. Rapeseed oil methyl esters preparation using heterogeneous catalysts // Bioresour. Technol. 1999. Vol. 70. P. 249—253.

55. Vicente G., Martinez M., Aracil J. Integrated biodiesel production: a comparison of different homogeneous catalysts systems // Bioresour Technol. 2004. Vol. 92. P. 297—305.

56. Jaeger K.-E., Eggert T. Lipases for biotechnology // Current Opinion in Biotechnology. 2002. Vol. 13. I. 4. P. 390—397.

57. Ranganathan S.V., Narasimhan S.L., Muthukumar K. An overview of enzymatic production of biodiesel // Bioresource Technology. 2008. Vol. 99. I. 10. P. 3975—3981

58. Hillen L.W., Pollard G., Wake L., White N. Hydrocracking of the oils of Botryoccocus braunii to transport fuels // Biotechnol. Bioeng. 1982. Vol. 24. P. 193—205.

59. Duan P., Savage P.E. Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts // Industrial and Engineering Chemistry Research. 2011. Vol. 50 I. 1. P. 2109— 2136.

60. Быкова М.В., Булавченко О.А., Ермаков Д.Ю., Лебедев М.Ю., Яковлев В.А., Пармон В.Н. Гидродеоксигенация гваякола в присутствии Ni-содержащих катализаторов // Катализ в промышленности. 2010. № 5. С. 45—52.

61. Дундич В.О., Хромова С.А., Ермаков Д.Ю., Лебедев М.Ю., Новопашина В.М., Систер В.Г., Ямчук А.И.,

62. Яковлев В.А. Исследование никелевых катализаторов реакции гидродеоксигенации биодизеля // Кинетика и катализ. 2010. Т. 51. № 5. С. 728—734.

63. Заварухин С.Г.,. Яковлев В.А, Пармон В.Н., Систер В.Г., Иванникова Е.М., Елисеева О.А. Разработка

64. процесса переработки рапсового масла в биодизель и высокоцетановые компоненты дизельного топлива // Химия и технология топлив и масел. 2010. Т. 1. С. 3—7.

65. Дундич В.О., Яковлев В.А. Гидродеоксигенация биодизеля в присутствие катализаторов на основе благородных металлов // Химия в интересах устойчивого развития. 17. (2009). 527—532.

66. Yakovlev V.A., Khromova S.A., Sherstyuk O.V., Dundich V.O., Ermakov D.Yu., Novopashina V.M., Lebedev M.Yu., Bulavchenko O., Parmon V.N. Development of new catalytic systems for upgraded bio-fuels production from biocrude-oil and biodiesel // Catalysis Today. 144. (2009). 362—366.

67. Яковлев В.А., Лебедев М.Ю., Ермаков Д.Ю., Хромова С.А., Новопашина В.М., Кириллов В.А., Пармон В.Н., Систер В.Г. Катализатор, способ его приготовления (варианты) и способ гидродеоксигенации жирных кислот, их эфиров и триглицеридов. Патент РФ 2 356 629 от 27.05.2009, пр. 22.08.2007.

68. Иванова А.С., Бухтиярова М.В., Карасюк Н.В., Добрынкин Н.М., Батыгина М.В., Яковлев В.А. Катализатор, способ его приготовления (варианты) и способ получения биотоплива. Патент РФ 2 366 503 от 10.09.2009, пр. 14.04.2008.


Для цитирования:


Сорокина К.Н., Яковлев В.А., Пилигаев А.В., Кукушкин Р.Г., Пельтек С.Е., Колчанов Н.А., Пармон В.Н. ПОТЕНЦИАЛ ПРИМЕНЕНИЯ МИКРОВОДОРОСЛЕЙ В КАЧЕСТВЕ СЫРЬЯ ДЛЯ БИОЭНЕРГЕТИКИ. Катализ в промышленности. 2012;(2):63-72.

For citation:


Sorokina K.N., Yakovlev V.A., Piligaev V.A., Kukushkin R.G., Pel’tek S.E., Kolchanov N.A., Parmon V.N. The potential use of microalgae as a feedstock for bioenergy. Kataliz v promyshlennosti. 2012;(2):63-72. (In Russ.)

Просмотров: 1249


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)