Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

The Influence of the System for Feedstock Feed in Fluidized Bed Reactors on the Reaction Efficiency with Isoparaffin Dehydrogenation in the Fluidized Aluminochromium Catalyst Bed as an Example

https://doi.org/10.18412/1816-0387-2015-6-62-69

Abstract

A mathematical model was developed for two units of industrial fluidized bed reactors equipped with different systems for feeding gaseous feedstock: three toroidal rings with nozzles in unit 1, and a false bottom with nozzles distributed through it in unit 2. Analysis of the efficiency (expressed as the yield of the target product – isobutylene) of the units during 4 month operation under industrial conditions demonstrated a higher efficiency of unit 2. The reasons for the differences in the product yields in two units were found using numerical solutions to obtain characteristic patterns of concentration fields of catalyst particles and temperature fields in the units; the results obtained demonstrated more uniform and dense catalyst distribution and more uniform reactorheating characteristics of unit 2. The constructed patterns of main circulative flows of the catalyst accounted for the considerable differences in the catalyst concentration and gas temperature fields. The numerical solutions were used for comparative analysis of the operation efficiencies of the units to show good agreement with the analytic results on industrial reactors. The proposed approach can be used for the design of new and optimization of operating units.

About the Authors

S. A. Solov’ev
Kazan (Volga) Federal University, Kazan
Russian Federation


A. G. Egorov
Kazan (Volga) Federal University, Kazan
Russian Federation


A. A. Lamberov
Kazan (Volga) Federal University, Kazan
Russian Federation


S. R. Egorova
Kazan (Volga) Federal University, Kazan
Russian Federation


A. N. Kataev
LLC "Kataliz-Prom", Nizhnekamsk
Russian Federation


References

1. Davidson J.F. Fluidization. New-York: Academic Press, 1971.

2. Протодьяконов И.О., Чесноков Ю.Г. Гидромеханика псевдоожиженного слоя. Л.: Химия, 1982.

3. Gidaspow D. Multiphase Flow and Fluidization. Boston: Academic Press, 1994.

4. Jackson R. The Dynamics of Fluidized Particles. Cambridge: Cambridge University Press, 2000.

5. Gibilaro L. Fluidization Dynamics. London: Butterworth-Heinemann, 2001.

6. Гельперин Н.И. Основы техники псевдоожижения. М.: Химия, 1967.

7. Мухленов И.П., Сажина Б.С., Фролова В.Ф. Расчеты аппаратов кипящего слоя. Л.: Химия, 1986.

8. Kunii D., Levenspiel O. Fluidization Engineering. London: Butterworth-Heinemann, 1991.

9. Кравцов А.В., Иванчина Э.Д., Ивашкина Е.Н., Костенко А.В., Юрьев Е.М., Бесков В.С. // Катализ в промышленности. 2008. № 6. С. 41.

10. Ивашкина Е.Н., Францина Е.В., Романовский Р.В., Долганов И.М., Иванчина Э.Д., Кравцов А.В. // Катализ в промышленности. 2012. № 1. С. 40.

11. Gyngazova M.S., Kravtsov A.V., Ivanchina E.D., Korolenko M.V., Chekantsev N.V. // Chemical Engineering Journal. 2011. № 176-177. P. 134.

12. Frantsina E.V., Ivashkina E.N., Ivanchina E.D., Romanovskii R.V. // Chemical Engineering Journal. 2014. № 238. P. 129.

13. Егоров А.Г., Гильманов Х.Х., Ламберов А.А., Уртяков П.В. // Катализ в промышленности. 2014. № 4. С. 14.

14. Chalermsinsuwana B, Samruamphianskun T., Piumsomboon P. // Chemical Engineering Research and Design. 2014. № 92. P. 2479.

15. Deb S., Tafti D.K. // Particuology. 2014. № 16. P. 19.

16. Zhuanga Y.-Q., Chena X.-M., Luob Z.-H., Xiao J. // Computers and Chemical Engineering. 2014. № 60. P. 1.

17. Shuai W., Tianyu Z., Guodong L., Huilin L., Liyan S. // Fuel. 2015. № 139. P. 646.

18. Upadhyay M., Park J.-H. // Powder Technology. 2015. № 272. P. 260.

19. Лебедев Н.Н. Химия и технология основного органического и нефтехимического синтеза. М.: Химия, 1981.

20. Тюряев И.Я. Физико-химические и технологические особенности получения дивинила из бутана и бутилена. Л.: Химия,1965.

21. Bowen R.M. Theory of Mixtures. New-York: Academic Press, 1976.

22. Ding J., Gidaspow D. // AICHE Journal. 1990. Vol. 36(4). P. 523.

23. Schiller L., Naumann Z. // Z. Ver. Deutsch. Ing. 1935. 77. P. 318.

24. Syamlal M., O'Brien T.J. // Bed. AIChESymp. Series. 1989. 85. P. 22.

25. Syamlal M. The Particle-Particle Drag Term in a Multiparticle Model of Fluidization. Morgantown: EG and G Washington Analytical Services Center, Inc. 1987.

26. Lun C.K.K., Savage S.B., Jeffrey D.J. // J. Fluid Mech. 1984. 140. P. 223.

27. Ranz W.E., Marshall W.R. // Chem. Eng. Prog. 1952. Vol. 48(4). P. 173.

28. Gunn D.J. // Int. J. Heat Mass Transfer. 1978. 21. P. 467.


Review

For citations:


Solov’ev S.A., Egorov A.G., Lamberov A.A., Egorova S.R., Kataev A.N. The Influence of the System for Feedstock Feed in Fluidized Bed Reactors on the Reaction Efficiency with Isoparaffin Dehydrogenation in the Fluidized Aluminochromium Catalyst Bed as an Example. Kataliz v promyshlennosti. 2015;15(6):62-69. (In Russ.) https://doi.org/10.18412/1816-0387-2015-6-62-69

Views: 773


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)