Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Properties of Cathode Non-Platinum Catalysts for Oxyhydrogen Fuel Cell with Proton- and Anion-conducting Electrolytes

https://doi.org/10.18412/1816-0387-2016-2-48-56

Abstract

Pyrolysis of nitrogen-containing complexes of iron and cobalt on the surface of disperse carbon materials was used for synthesis of cathode catalysts for oxyhydrogen fuel cells (FC) with proton-conducting (acidic) and anion-conducting (alkaline) electrolytes. The catalysts were characterized by XPS and tested using a thin-film disc electrode and in oxyhydrogen FC under model conditions. Properties of the CoFe/C system prepared by pyrolysis of macroheterocyclic compounds of iron and cobalt on carbon materials (soot HS-72 and multilayer nanotubes (CNT)) were described for the first time. From XPS data, the surface of the catalytic CoFe/C systems is rich in carbon (95,5 at.%), contains nitrogen

(2 at.%), oxygen (2 at.%) and metals (0,5 at.%). The data obtained by electrochemical measurements under model conditions revealed that the catalytic systems CoFe/CNT are close to the commercial platinum catalyst 60%Pt/C (HiSPEC9100) in their activity to oxygen reduction in an alkali medium (0,5 M KOH). Half-wave potentials are 0,85 and 0,88 V for catalysts CoFe/CNT and 60%Pt/C (HiSPEC9100), respectively. The maximal specific capacity of the oxyhydrogen FC with an anion-conducting electrolyte is 210 mW/cm2 (a 60%Pt/C (HiSPEC9100) based cathode) and 180 mW/cm2 (CoFe/CNT based cathode). In its characteristics, MEA with the non-platinum cathode compete well with the best analogues described in literature. The results obtained demonstrated the necessity of the further studies on scaling-up the technology for synthesis of the developed non-platinum cathode catalysts and on optimization of the MEA FC architecture based thereon.

About the Authors

O. V. Korchagin
Frumkin Institute of Physical Chemistry and Electrochemistry, Moscow
Russian Federation


V. A. Bogdanovskaya
Frumkin Institute of Physical Chemistry and Electrochemistry, Moscow
Russian Federation


M. R. Tarasevich
Frumkin Institute of Physical Chemistry and Electrochemistry, Moscow
Russian Federation


A. V. Kuzov
Frumkin Institute of Physical Chemistry and Electrochemistry, Moscow
Russian Federation


G. V. Zhutaeva
Frumkin Institute of Physical Chemistry and Electrochemistry, Moscow
Russian Federation


M. V. Radina
Frumkin Institute of Physical Chemistry and Electrochemistry, Moscow
Russian Federation


V. T. Novikov
Mendeleev Russian Chemical and Technological University, Moscow
Russian Federation


V. V. Zharikov
Mendeleev Russian Chemical and Technological University, Moscow
Russian Federation


References

1. The fuel cell Industry Review 2013. URL: http://www.fuelcelltoday.com/media/1889744/fct_review_2013.pdf (дата обращения: 29.04.2015)

2. Fernandes A.C., Ticianelli E.A. // J. Power Sources, 2009, vol. 193, no. 2, pp. 547-554.

3. Peighambardoust S.J., Rowshanzamir S., Amjadi M. // Int. J. Hydrogen energy, 2010, vol. 35, no. 17, pp. 9349-9384.

4. Nasef M.M., Aly A.A. // Desalination, 2012, vol. 287, pp. 238-246.

5. Merle G., Wessling M., Nijmeijer K. // J. Membr. Sci., 2011, vol. 377, no. 1-2, pp. 1-35.

6. Fukuta K. Electrolyte Materials for AMFCs and AMFC Perfomance. Tokuama Corp. May 8th 2011. URL: http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/amfc_050811_fukuta.pdf (дата обращения: 29.04.2015)

7. Varcoe J.R., Slade R.C.T., Wright G.L., Chen Y. // J. Phys. Chem., B, 2006, vol. 110, no. 42, pp. 21041-21049.

8. Lu S., Pan J., Huang, A., Zhuang L., Lu J. // PNAS, 2008, vol.105, no. 52, pp. 20611-20614.

9. Sheng W., Bivens A.P., Myint M., Zhuang Z., Chen J.G., Yan Y. // 224th ECS Meet, 2013, Abs.# 1367.

10. Hu Q., Li G., Pan J., Tan L., Lu J., Zhuang L. // Int. J. Hydrogen energy, 2013, vol. 38, no. 36, pp. 16264-16268.

11. Ng J.W.D., Gorlin Y., Nordlund D., Jaramillo T.F. // J. Electrochem. Soc., 2014, vol. 161, no. 7, pp. D3105-3112.

12. Тарасевич М.Р., Корчагин О.В. // Электрохимия. 2013. Т. 49. № 7. С. 676—695.

13. Тарасевич М.Р., Мазин П.В., Капустина Н.А. // Электрохимия. 2012. Т. 48. № 11. С. 1222—1232.

14. Тарасевич М.Р., Мазин П.В., Капустина Н.А. // Электрохимия. 2011. Т. 47. № 8. С. 986—996.

15. Богдановская В.А., Тарасевич М.Р., Лозовая О.В. // Электрохимия. 2011. Т. 47. № 7. С. 902—917.

16. Богдановская В.А., Бекетаева Л.А., Рыбалка К.В., Ефремов, Б.Н., Загудаева Н.М., Сакашита М., Иидзима Т., Исмагилов З.Р. // Электрохимия. 2008. Т. 44. № 3. С. 316—325.

17. Yang Z., Nie, H., Chen X., Chen, X., Huang S. // J. Power Sources, 2013, vol. 236, pp. 238-249.

18. Procedures For Performing In-Plane Membrane Conductivity Testing, 2008. URL: http://energy.gov/sites/prod/files/2014/03/f10/htmwg_may09_conductivity_testing.pdf (дата обращения: 14.08.2015)

19. Wang H., Turner J.A. // J. Power Sources, 2008, vol. 183, no. 2, pp. 576-580.

20. Grew K.N., Ren X., Chu D. // Electrochem. and Solid-State Lett., 2011, vol.14, no.12, pp. B127-B131.

21. Давыдова Е.С., Тарасевич М.Р. // Физикохимия поверхности и защита материалов. 2015. Т. 51. № 2. С. 184—192.

22. Finšgar M, Fassbender S, Hirth S, Milošev I. // Mater. Chem. Phys., 2009, vol. 116, no. 1, pp. 198-206.

23. Плесков Ю.В., Филиновский В.Ю. Вращающийся дисковый электрод. М.: Наука, 1972. 345 с.

24. Цивадзе А.Ю., Тарасевич М.Р., Кузов А.В., Кузнецова Л.Н., Лозовая О.В., Давыдова Е.С. // Доклады Академии наук. 2012. Т. 442. № 6. С. 776—779.

25. Тарасевич М.Р., Корчагин О.В. // Электрохимия. 2014. Т. 50. № 8. С. 821—834.

26. Wu J., Zhang D., Wang Y., Wan Y., Hou B. // J. Power Sources, vol. 198, pp. 122-126.

27. Gunasekara I., Lee M., Abbott D., Mukerjeez S. // J. Electrochem. Lett., 2012, vol.1, no. 2, pp. F16-19.


Review

For citations:


Korchagin O.V., Bogdanovskaya V.A., Tarasevich M.R., Kuzov A.V., Zhutaeva G.V., Radina M.V., Novikov V.T., Zharikov V.V. Properties of Cathode Non-Platinum Catalysts for Oxyhydrogen Fuel Cell with Proton- and Anion-conducting Electrolytes. Kataliz v promyshlennosti. 2016;16(2):48-56. (In Russ.) https://doi.org/10.18412/1816-0387-2016-2-48-56

Views: 742


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)