

Methanol Dehydrogenation over Cu-containing Catalysts
https://doi.org/10.18412/1816-0387-2016-3-17-23
Abstract
Comparative studies of Cu-containing oxide catalysts with different chemical and phase compositions and thermodynamic analysis were aimed at identifying conditions for highly selective process of vapor-phase dehydrogenation of methanol to methyl formate or synthesis gas. It was shown that Cu0 nanoparticles formed during the reductive activation are differently selective to the formation of methyl formate from methanol and to its dehydrogenation to form synthesis gas. The proper choice of the catalyst composition and process conditions may provide a high selectivity (90–100 %) either to methyl formate or to synthesis gas. The catalysts based on the zincsilite type Cu-Zn hydroxosilicate and on CuAlZn aurichalcite are highly selective to methyl formate. The experimental data obtained with the most effective catalyst Cu/SiO2 for dehydrogenation to synthesis gas demonstrate that the yield of synthesis gas can reach 20 m3/h at the 1 atm pressure of methanol vapor, 200 °C and 0,5 s contact time.
About the Authors
T. P. MinyukovaRussian Federation
A. V. Khasin
Russian Federation
A. A. Khassin
Russian Federation
N. V. Shtertser
Russian Federation
I. I. Simentsova
Russian Federation
T. M. Yurieva
Russian Federation
References
1. Lee J.S., Kim J.C., Kim Y.G. // Appl.Catal. A: Gen. 1990. Vol. 57. P. 1.
2. Sodesawa T. // React. Kinet. Catal. Lett. 1986. Vol. 32. No. 1. P. 51.
3. Sodesawa T., Nagacho M., Onodera O., Nozaki F. // J. Catal. 1986. Vol. 102. No. 2. P. 460.
4. Guerreiro E.D., Gorriz O.F., Rivarola L.A., Arrua L.A. // Appl. Catal. A: Gen. 1997. Vol. 165. P. 259.
5. Guerreiro E.D., Gorriz O.F., Larsen G., Arrua L.A. // Appl. Catal. A: Gen. 2000. Vol. 204. P. 33.
6. Galloa Al., Tsoncheva T., Marelli M., Mihaylov M., Dimitrov M. Santo V.D., Hadjiivanov K. // Appl. Catal. B: Env. 2012. V. 126. P. 161.
7. Rodriguez-Ramos I., Rojas M.L., Fierro J.L.G. // Appl. Catal. 1991. Vol. 68. No. 1. P. 217.
8. Chung M.J., Moon D.J., Park K.Y., Ihm S.K. // J. Catal. 1992. Vol. 136. P. 609.
9. Лапидус А.Л., Антонюк С.Н., Капкин В.Д., Брук И. А., Соминский С.Д., Нечуро Н.С. // Нефтехимия. 1985. Т. 25. С. 761.
10. Wang Y., Gang R., Han S. // React. Kinet. Catal. Lett. 1999. Vol. 67. No. 2. P. 305.
11. Sato S., Iijima M., Nakayama T., Sodesawa T., Nozaki F. // J. Catal. 1997. Vol. 169. No. 2. P. 447.
12. Шлегель Л., Гутшик Д., Розовский А.Я. // Кинетика и катализ. 1990. Т. 4. № 4. С. 1000.
13. Горшков С.В., Лин Г.И., Розовский А.Я. // Кинетика и катализ. 1999. Т. 40. № 3. С. 372.
14. Yurieva T.M., Kustova G.N., Minyukova T.P., Poels E.K., Bliek A., Demeshkina M.P., Plyasova L.M., Krieger T.A., Zaikovskii V.I. // Mater. Res. Innov. 2001. Vol. 5. No. 1. P. 3.
15. Yurieva T.M., Plyasova L.M., Zaikovskii V.I., Minyukova T.P., Bliek A., van den Heuvel J.C., Davydova L.P., Molina I.Yu., Demeshkina M.P., Khassin A.A., Batyrev E.D. // Phys. Chem. Chem. Phys. 2004. Vol. 6. No. 18. P. 4522.
16. Scholten J.J.F., Konvalinka J.A. // Trans. Farad. Soc. 1969. Vol. 65. P. 2465.
17. Sato S., Takahashi R., Sodesawa T., Yuma K., Obata Y. // J. Catal. 2000. Vol. 196. P. 195.
18. Evans J.W., Wainwright M.S., Bridgewater A.J., Young D.J. // Appl. Catal. 1983. Vol. 7. P. 75.
19. Minyukova T.P., I.I. Simentsova, A.V. Khasin, N.V. Shtertser, N.A. Baronskaya, A.A. Khassin and T.M. Yurieva // Appl. Catal. A: Gen. 2002. Vol. 237. P. 171.
20. Yurieva T.M., Minyukova T.P., Kustova G.N., Plyasova L.M., Krieger T.A., Demeshkina M.P., Zaikovskii V.I., Malakhov V.V., Dovlitova L.S. // Mater. Res. Innov. 2001. Vol. 5. No. 2. P. 74.
21. Т.П. Минюкова, Н.В. Штерцер, А.А. Хасин, Л.М. Плясова, Г.Н. Кустова, В.И. Зайковский, Ю.Г. Шведенков, Н.А. Баронская, Johannes C. van den Heuvel, А.В. Кузнецова, Л.П. Давыдова, Т.М. Юрьева // Кинетика и катализ. 2008. Т. 49. № 6. С. 865.
22. Макарова О.В., Юрьева Т.М., Кустова Г.Н., Зиборов А.В., Плясова Л.М., Минюкова Т.П., Зайковский В.И. // Кинетика и катализ. 1993. Т. 34. № 4. С. 681.
23. Khassin A.A., Kustova G.N., Jobic H., Yurieva T.M., Chesalov Yu.A., Filonenko G.A., Plyasova L.M., Parmon V.N. // Phys. Chem. Chem. Phys. 2009. Vol. 11. P. 6090.
24. Yurieva T.M. // Catal. Today. 1999. Vol. 51. No. 3-4. P. 457.
25. Vitanen M.M., Jansen W.P.A., van Welzenis R.G., Brongerma H.H., Brands D.S., Poels E.K., Bliek A. // J. Phys Chem. B. 1999. Vol. 103. No. 29. P. 6025.
26. Zhang Z., Patterson M., Ren M., Wang Y., Flake J. C., Sprunger P.T., Kurtz R.L. // J. Vacuun Science & Technology. 2013. Vol. 31. No. 1. - 01A144
27. Stull D.R., Westrum E.F., Sinke G.C. The chemical thermodynamics of organic compounds. Wiley, New-York. 1969. P 450, 643.
28. Pat. 5194675 (US). Preparation of methyl formate / Joerg K., Mueller F.-J., Irgang M., Marosi L., Borchert G. 1993.
Review
For citations:
Minyukova T.P., Khasin A.V., Khassin A.A., Shtertser N.V., Simentsova I.I., Yurieva T.M. Methanol Dehydrogenation over Cu-containing Catalysts. Kataliz v promyshlennosti. 2016;16(3):17-23. (In Russ.) https://doi.org/10.18412/1816-0387-2016-3-17-23