Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Methanol Dehydrogenation over Cu-containing Catalysts

https://doi.org/10.18412/1816-0387-2016-3-17-23

Abstract

Comparative studies of Cu-containing oxide catalysts with different chemical and phase compositions and thermodynamic analysis were aimed at identifying conditions for highly selective process of vapor-phase dehydrogenation of methanol to methyl formate or synthesis gas. It was shown that Cu0 nanoparticles formed during the reductive activation are differently selective to the formation of methyl formate from methanol and to its dehydrogenation to form synthesis gas. The proper choice of the catalyst composition and process conditions may provide a high selectivity (90–100 %) either to methyl formate or to synthesis gas. The catalysts based on the zincsilite type Cu-Zn hydroxosilicate and on CuAlZn aurichalcite are highly selective to methyl formate. The experimental data obtained with the most effective catalyst Cu/SiO2 for dehydrogenation to synthesis gas demonstrate that the yield of synthesis gas can reach 20 m3/h at the 1 atm pressure of methanol vapor, 200 °C and 0,5 s contact time.

About the Authors

T. P. Minyukova
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


A. V. Khasin
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


A. A. Khassin
Boreskov Institute of Catalysis, Novosibirsk; Novosibirsk State University
Russian Federation


N. V. Shtertser
Boreskov Institute of Catalysis, Novosibirsk; Novosibirsk State University
Russian Federation


I. I. Simentsova
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


T. M. Yurieva
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


References

1. Lee J.S., Kim J.C., Kim Y.G. // Appl.Catal. A: Gen. 1990. Vol. 57. P. 1.

2. Sodesawa T. // React. Kinet. Catal. Lett. 1986. Vol. 32. No. 1. P. 51.

3. Sodesawa T., Nagacho M., Onodera O., Nozaki F. // J. Catal. 1986. Vol. 102. No. 2. P. 460.

4. Guerreiro E.D., Gorriz O.F., Rivarola L.A., Arrua L.A. // Appl. Catal. A: Gen. 1997. Vol. 165. P. 259.

5. Guerreiro E.D., Gorriz O.F., Larsen G., Arrua L.A. // Appl. Catal. A: Gen. 2000. Vol. 204. P. 33.

6. Galloa Al., Tsoncheva T., Marelli M., Mihaylov M., Dimitrov M. Santo V.D., Hadjiivanov K. // Appl. Catal. B: Env. 2012. V. 126. P. 161.

7. Rodriguez-Ramos I., Rojas M.L., Fierro J.L.G. // Appl. Catal. 1991. Vol. 68. No. 1. P. 217.

8. Chung M.J., Moon D.J., Park K.Y., Ihm S.K. // J. Catal. 1992. Vol. 136. P. 609.

9. Лапидус А.Л., Антонюк С.Н., Капкин В.Д., Брук И. А., Соминский С.Д., Нечуро Н.С. // Нефтехимия. 1985. Т. 25. С. 761.

10. Wang Y., Gang R., Han S. // React. Kinet. Catal. Lett. 1999. Vol. 67. No. 2. P. 305.

11. Sato S., Iijima M., Nakayama T., Sodesawa T., Nozaki F. // J. Catal. 1997. Vol. 169. No. 2. P. 447.

12. Шлегель Л., Гутшик Д., Розовский А.Я. // Кинетика и катализ. 1990. Т. 4. № 4. С. 1000.

13. Горшков С.В., Лин Г.И., Розовский А.Я. // Кинетика и катализ. 1999. Т. 40. № 3. С. 372.

14. Yurieva T.M., Kustova G.N., Minyukova T.P., Poels E.K., Bliek A., Demeshkina M.P., Plyasova L.M., Krieger T.A., Zaikovskii V.I. // Mater. Res. Innov. 2001. Vol. 5. No. 1. P. 3.

15. Yurieva T.M., Plyasova L.M., Zaikovskii V.I., Minyukova T.P., Bliek A., van den Heuvel J.C., Davydova L.P., Molina I.Yu., Demeshkina M.P., Khassin A.A., Batyrev E.D. // Phys. Chem. Chem. Phys. 2004. Vol. 6. No. 18. P. 4522.

16. Scholten J.J.F., Konvalinka J.A. // Trans. Farad. Soc. 1969. Vol. 65. P. 2465.

17. Sato S., Takahashi R., Sodesawa T., Yuma K., Obata Y. // J. Catal. 2000. Vol. 196. P. 195.

18. Evans J.W., Wainwright M.S., Bridgewater A.J., Young D.J. // Appl. Catal. 1983. Vol. 7. P. 75.

19. Minyukova T.P., I.I. Simentsova, A.V. Khasin, N.V. Shtertser, N.A. Baronskaya, A.A. Khassin and T.M. Yurieva // Appl. Catal. A: Gen. 2002. Vol. 237. P. 171.

20. Yurieva T.M., Minyukova T.P., Kustova G.N., Plyasova L.M., Krieger T.A., Demeshkina M.P., Zaikovskii V.I., Malakhov V.V., Dovlitova L.S. // Mater. Res. Innov. 2001. Vol. 5. No. 2. P. 74.

21. Т.П. Минюкова, Н.В. Штерцер, А.А. Хасин, Л.М. Плясова, Г.Н. Кустова, В.И. Зайковский, Ю.Г. Шведенков, Н.А. Баронская, Johannes C. van den Heuvel, А.В. Кузнецова, Л.П. Давыдова, Т.М. Юрьева // Кинетика и катализ. 2008. Т. 49. № 6. С. 865.

22. Макарова О.В., Юрьева Т.М., Кустова Г.Н., Зиборов А.В., Плясова Л.М., Минюкова Т.П., Зайковский В.И. // Кинетика и катализ. 1993. Т. 34. № 4. С. 681.

23. Khassin A.A., Kustova G.N., Jobic H., Yurieva T.M., Chesalov Yu.A., Filonenko G.A., Plyasova L.M., Parmon V.N. // Phys. Chem. Chem. Phys. 2009. Vol. 11. P. 6090.

24. Yurieva T.M. // Catal. Today. 1999. Vol. 51. No. 3-4. P. 457.

25. Vitanen M.M., Jansen W.P.A., van Welzenis R.G., Brongerma H.H., Brands D.S., Poels E.K., Bliek A. // J. Phys Chem. B. 1999. Vol. 103. No. 29. P. 6025.

26. Zhang Z., Patterson M., Ren M., Wang Y., Flake J. C., Sprunger P.T., Kurtz R.L. // J. Vacuun Science & Technology. 2013. Vol. 31. No. 1. - 01A144

27. Stull D.R., Westrum E.F., Sinke G.C. The chemical thermodynamics of organic compounds. Wiley, New-York. 1969. P 450, 643.

28. Pat. 5194675 (US). Preparation of methyl formate / Joerg K., Mueller F.-J., Irgang M., Marosi L., Borchert G. 1993.


Review

For citations:


Minyukova T.P., Khasin A.V., Khassin A.A., Shtertser N.V., Simentsova I.I., Yurieva T.M. Methanol Dehydrogenation over Cu-containing Catalysts. Kataliz v promyshlennosti. 2016;16(3):17-23. (In Russ.) https://doi.org/10.18412/1816-0387-2016-3-17-23

Views: 1732


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)