Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Supercritical Fluid CO2-Extraction Regeneration of the Nickel-Molybdenum Catalyst for Hydrotreatment

https://doi.org/10.18412/1816-0387-2016-5-43-50

Abstract

Results of the studies of a supercritical fluid CO2-extraction regeneration of the industrial nickel-molybdenum catalyst DN-3531 for hydrotreatment at 323–383 K and pressure up to 30 MPa and of the basic extractant to be modified with polar compounds such as chloroform, methanol, ethanol, acetone and dimethylsulfoxide (DMSO) are reported. The said modifier sequence indicate an increase in the solubilizing ability of the modified supercritical carbon dioxide (SC-CO2) with respect to the catalyst deactivating sediments. However, with DMSO as the most effective modifier, not only deactivating compounds but also nickel and molybdenum are removed that causes a considerable decrease in the final activity of the regenerated catalyst. The coke content in the catalyst decreases to one third while the specific surface area and pore volume increase during the extractive regeneration. After the catalyst deactivated during hydrodesulfurization of dibenzothiophene and hydrogenation of naphthaline was once subjected to the SC-CO2 treatment, the catalyst activity increased several times to be as high as 2,5 times of that of the catalyst regenerated using the traditional oxidative method.

About the Authors

Ameer Abed Jaddoa
Kazan National Research Technological University; University of Technology, Baghdad, Iraq
Russian Federation


T. P. Bilalov
Kazan National Research Technological University
Russian Federation


F. M. Gumerov
Kazan National Research Technological University
Russian Federation


F. R. Gabitov
Kazan National Research Technological University
Russian Federation


Z. I. Zaripov
Kazan National Research Technological University
Russian Federation


R. S. Yarullin
Tatneftekhiminvest-holding, Kazan
Russian Federation


A. A. Pimerzin
Samara State Technical University, Samara
Russian Federation


P. A. Nikul’shin
Samara State Technical University, Samara
Russian Federation


References

1. Курганов В.М. Кушнер Б.Э., Агафонов А.В. Паровоздушная регенерация катализаторов гидроочистки. М.: ЦНИИТ Энефтехим. 1973. 71 с.

2. Reid R.С. Supercritical Fluid Extraction. A Perspective. Hougen. Lecture Series, University of Wisconsin. 1981. 435 р.

3. Wradman L., Herskowitz M., Korin E., Wisniak J. // Ind. Eng. Chem. Res. 2001. Vol. 40. P. 1589–1590.

4. Osada M., Sato O., Arai K., Shirai M. Subcritical water regeneration of catalysts poisoned by sulfur // Proceedings of the 10th European Meeting on Supercritical Fluids. 2005. Strasburg /Colmar (France).

5. Богдан В.И., Коклин А.Е., Казанский В.Б. // Сверхкритические флюиды. Tеория и практика. 2006. Т. 1. № 2. С. 5–12

6. Шириязданов Р.Р. // Сверхкритические флюиды. Теория и практика. 2011. Т. 6. № 1. С. 19–24

7. Gaydamaka S.N., Timofeev V.V., Lemenovskii D.A., Kardashev S.V., Parenago O.O., Bagratashvili V.N., Sergienko S.A., Brusova G.P., Lunin V.V. // Catal. Ind. 2013. Vol. 5. No. 3. P. 216–222.

8. Song C. // Catal. Today. 2003. V. 86. P. 211.

9. Lewis R.J. Sax’s dangerous properties of industrial materials. 11 ed. Wiley-interscience. 2004, C. 270.

10. Чернышев А.К., Гумеров Ф.М., Цветинский Г.Н., Яруллин Р.С., Иванов C.В., Левин Б.В., Шафран М.И., Жилин И.Ф., Бесков А.Г., Чернышев К.А. Диоксид углерода. Свойства, улавливание (получение), применение. М.: Галлея-принт, 2013. 903 c.

11. Гумеров Ф.М., Сагдеев А.А., Билалов Т.Р. и др. Катализаторы: регенерация с использованием сверхкритического флюидного СО2-экстракционного процесса. Казань: Бриг, 2015. 264 c.

12. Билалов Т.Р., Гумеров Ф.М. Процессы производства и регенерации катализаторов. Термодинамические основы процессов производства и регенерации палладиевых катализаторов с использованием сверхкритического диоксида углерода LAP LAMBERT Academic Publishing GmbH & Co. KG. Dudweiler Landstr. 99, 66123 Saarbrucken, Germany. 2011, 153 P.

13. Gumerov F.M., Le Neindre B., Bilalov T.R. et al. Regeneration of spent catalyst and impregnation of catalyst by supercritical fluid. New York, Nova publisher, 2016. 168 Р.

14. Johnston K.P. // in Supercritical Fluid Science and Technology. Am. Chem. Soc. 1989. Ch. L. P. 1–12.

15. Пичугин А.А., Тарасов В.В. // Успехи химии. 1991. Т. 60. Вып. 11. C. 2412–2421.

16. Курганов В.М. Паровоздушная регенерация катализаторов гидроочистки / В.М. Курганов, Б.Э. Кушнер, А.В. Агафонов. М.: ЦНИИТЭнефтехим, 1973. 71 с.

17. Каталог продукции CRI Catalyst company Inc.

18. Zakharov А.А., Ameer Abed Jaddoa, Bilalov Т.R., Gumerov F.М. // Int. J. of Analytical Mass Spectrometry and Chromatography. 2014. Vol. 2. Р. 113–122.

19. Nikulshin P.A., Mozhaev A.V., Maslakov K.I., Pimerzin A.A., Kogan V.M. // Applied Catalysis B: Environmental. V. 158–159. 2014. P. 161–174.

20. Химическая энциклопедия. Редакционная коллегия: Кнунянц И.Л. и др. М.: Советская энциклопедия, 1988. 623 c.

21. Боресков Г.К. Катализ. Новосибирск: Наука, 1971. 267 c.

22. Коган В.М., Никульшин П.А., Дорохов В.С., Пермяков Е.А., Можаев А.В., Ишутенко Д.И., Елисеев О.Л., Рождественская Н.Н., Лапидус А.Л. // Известия РАН. Сер. Химическая. (2). 2014. C. 332–345

23. Nikulshin P.A., Mozhaev A.V., Pimerzin Al.A., Konovalov V.V., Pimerzin A.A. // Fuel. V. 100. 2012. P. 24–33.

24. Scharfe R.R., Sastri V.S., Chakrabarti C.L., Langfor C.H. // Canadian Journal of Chemistry. 1973. Vol. 51. P. 67–69.

25. Ирисова К.Н., Талисман Е.Л., Смирнов В.К. // ХТТМ. 2003. Т. 1-2. С. 21


Review

For citations:


Jaddoa A.A., Bilalov T.P., Gumerov F.M., Gabitov F.R., Zaripov Z.I., Yarullin R.S., Pimerzin A.A., Nikul’shin P.A. Supercritical Fluid CO2-Extraction Regeneration of the Nickel-Molybdenum Catalyst for Hydrotreatment. Kataliz v promyshlennosti. 2016;16(5):43-50. (In Russ.) https://doi.org/10.18412/1816-0387-2016-5-43-50

Views: 794


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)