

The Influence of Crushing of Wheat Bran on the Properties and Reactivity to Biocatalytic Conversion
https://doi.org/10.18412/1816-0387-2016-5-75-82
Abstract
Potentialities of wheat bran as a feedstock for biocatalytic conversion to synthesize sugars were demonstrated. The relatively low reactivity of the feedstock can be 2–4 fold increased through its dry crushing using a planetary mill-activator. A complex enzymatic agent (EA) Penicillium verruculosum gaBG showing cellulolytic, hemicellulolytic and amylolytic activity was used to improve the yield of reducing sugars; the maximal yield equal to 68,8 mg/L at the initial substrate concentration of 100 g/L in the reaction mixture was reached through biocatalytic conversion of wheat bran milled for 7–10 min in the presence of 60 mg/g of EA gaBG (and additional EA β-glucosidase F10, 40 unit/g), glucose being predominant among the produced sugars (93–95 %). The content of polysaccharide components was 62,4 % of the dry basis of wheat bran; hence, the observed sugar yield was close to the theoretical yield (with regard to water added during the enzymatic hydrolysis), and the carbohydrate component of the broken wheat bran was practically completely converted. Lengthening of the crushing time to 7–10 min resulted in a considerable decrease in the bran particle size, in weakening of their ability to bind water (by 28 %), in doubling of the content of soluble sugars and in an increase (by 12,6 %) in the total content of soluble components against those in the initial feedstock.
About the Authors
D. O. OsipovRussian Federation
A. G. Bulakhov
Russian Federation
O. G. Korotkova
Russian Federation
A. M. Rozhkova
Russian Federation
E. O. Duplyakin
Russian Federation
A. V. Afonin
Russian Federation
A. S. Sereda
Russian Federation
A. P. Sinitsyn
Russian Federation
References
1. Stevenson L., Phillips F., O’Sullivan K., Walton J. Wheat bran: its composition and benefits to health, a European perspective. International J. Food Sci.Nutr. 2012. 63(8). P. 1001–1013.
2. Pruckler M., Siebenhandl-Ehn S., Apprich S., Holtinger S., Haas C., Schmid E., Kneifel W. Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. Food Science and Technology. V. 56. 2014. P. 211–221.
3. Сельское хозяйство, охота и охотничье хозяйство, лесоводство в России. 2015: Стат. сб. Росстат. M., 2015. C. 201
4. Hell J., Pruckler M., Danner L., Henniges U., Apprich S., Rosenau T., Kneifel W., Bohmdorfer S. A comparison between near-infrared (NIR) and mid-infrared (ATR-FTIR) spectroscopy for the multivariate determination of compositional properties in wheat bran samples. Food Control. V. 60. 2016. P. 365–369.
5. Cripwell R., Favaro L., Rose S.H., Basaglia M., Cagnin L., Casella S., van Zyl W. Utilization of wheat bran as a substrate for bioethanol production using recombinant cellulases and amylolytic yeast. Applied Energy. V. 160. 2015. P. 610–617.
6. Wood I.P, Cook N.M., Wilson D.R., Ryden P., Robertson J.A., Waldron K.W. Ethanol from a biorefinery waste stream: Saccharification of amylase, protease and xylanase treated wheat bran. Food Chemistry. 2016. V. 198. P. 125–131.
7. Синицын А.П., Черноглазов В.М., Гусаков А.В. Методы исследования и свойства целлюлолитических ферментов. М.: ВИНИТИ, 1990. Т. 25. C. 154
8. Gusakov A.V., Sinitsyn A.P., Salanovich T.N., Bukhtojarov F.E., Markov A.V., Ustinov B.B., Zeijl C., Punt P., Burlingame R. Purification, cloning and characterization of two forms of thermostable and highly active cellobiohydrolase I (Cel7A) produced by the industrial strain of Chrysosporium lucknowense. Enz.Microb.Technol. 2005. V. 36. P. 57–69.
9. Досон Р., Эллиот Д., Эллиот У., Джонс К. Справочник биохимика. Пер. с англ. М.: Мир, 1991. С. 466
10. Mariotti F., Tome D., Patureau Mirand P. Critical Converting Nitrogen into Protein – Beyond 6.25 and Jones' Factors. Reviews in Food Science and Nutrition. 2008. V. 48. Iss. 2. P. 177–184.
11. Cadden A.M. Comparative effects of particle size reduction on physical structure and water binding properties of several slant fibers. J. Food Sci. 1987. V. 52. Nо. 6. P. 1595–1599.
12. Santala O.K., Outi K.S., Nordlund E.A., Poutanen K.S. Treatments with xylanase at high (90 %) and low (40 %) water content have different impacts on physicochemical properties of wheat bran. Food and Bioprocess Technol. 2013. V. 6. Nо. 11. P. 3102–3112.
13. Jane J. Granule morphology by scanning electron microscopy. Anthology of starch. 1994. Nо. 46. P. 121–129.
14. Скомаровский А.А., Гусаков А.В., Окунев О.Н., Соловьева И.В., Бубнова Т.В., Кондратьева Е.Г., Синицын А.П. Гидролитическая способность ферментных препаратов из грибов родов Penicillium и Trichoderma. Прикл. биохимия и микробиология. 2005. Т. 41. № 2. С. 210–212
Review
For citations:
Osipov D.O., Bulakhov A.G., Korotkova O.G., Rozhkova A.M., Duplyakin E.O., Afonin A.V., Sereda A.S., Sinitsyn A.P. The Influence of Crushing of Wheat Bran on the Properties and Reactivity to Biocatalytic Conversion. Kataliz v promyshlennosti. 2016;16(5):75-82. (In Russ.) https://doi.org/10.18412/1816-0387-2016-5-75-82