

Studies of Thermal Conversion of Acetonelignin in Supercritical Butanol in the Presence of NiCuMo/SiO2 Catalysts
https://doi.org/10.18412/1816-0387-2017-1-60-69
Abstract
Both industrially implemented and developed technologies for chemical wood processing are aimed at preferable transformation of the cellulose component into target products, while effective methods for processing of lignin, a bulky waste, are as yet unavailable. The present study was focused on the influence of NiCuМо/SiO2 catalysts on thermal transformations of acetonelignin in the superctirtical butanol medium at 280, 300, 350 °C. Chromatomass spectrometric and 13C NMR spectroscopic techniques were used for characterization to the liquid products. Thermochemical transformations of butanol were not observed at the temperature below 300 °C. The butanol conversion was increased up to 36–40 wt % in the presence of the catalysts. In the presence of the NiCuМо/SiO2 catalysts at 300 °C, the yield of hexane-solluble products of acetonelignin thermotransformations increased by factor of 2.4, while the solid residue yield was factor of 3.3 decreased. Under these conditions, the proportion of methoxyphenols, including syringol, in the hexane-soluble products was factor of 14 lower. 13C NMR data indicated that the catalytic transformations of acetonelignin into acetone-soluble liquid products are accompanied by the cleavage of β–O–4 bonds between structural elements of lignin and by a decrease in the content of methoxyl groups predominantly in syringal structural units of the products formed.
About the Authors
V. I. SharypovRussian Federation
B. N. Kuznetsov
Russian Federation
V. A. Yakovlev
Russian Federation
N. G. Beregovtsova
Russian Federation
S. V. Baryshnikov
Russian Federation
References
1. Biofuels alternative feedstocks and conversion processes. Ed. By A. Pandey, C. Larroche, S.C. Ricke, C.-G. Dussap, E. Gnansounou. Academic Press. 2011. Р. 629.
2. Nelson V. Introduction to Renewable Energy. CRC Press, 2011. 384 р.
3. Zakzeski J., Bruijnincx P.C.A., Jongerius A.L., Weckhuysen B.M. // Chem. Rev. 2010. V. 110. P. 3552—3599.
4. Vazquez G., Rodriguez-Bona C., Freire S., Gonzalez-Alvarez J., Antorrena G. // Bioresour. Technol. 1999. V. 70. P. 209—214.
5. Parka Y., Dohertyb W.O.S., Halleya P.J. // Industrial crops and products. 2008. V. 27. P. 163—167.
6. Cateto C.A., Barreiro M.F., Rodrigues A.E., Belgacem M.N. // Reactive & Functional Polymers. 2011. V. 71. P. 863—869.
7. Kim J.Y., Park J., Hwang H., Kim J.K., Song K., Choi J.W. // J. Anal. Appl. Pyrolysis. 2015. V. 113. P. 99—106.
8. Huang X., Koranyi T.I., Boot M.D., Hensen E.J.M. // Chem. Sus. Chem. V. 7. Issue 8. 2014. P. 2276—2288.
9. Кузнецов Б.Н., Шарыпов В.И., Чесноков Н.В., Береговцова Н.Г., Барышников С.В., Лавренов А.В., Восмериков А.В., Агабеков В.Е. // Кинетика и катализ. 2015. Т. 56. № 4. С. 434—441.
10. Kim J-Y., Park J., Kim U.-J., Choi J.W. // Energy & Fuels. 2015. V. 29. N. 8. P. 5154—5163.
11. Hu J., Shen D., Wu S., Zhang H., Xiao R. // Energy Fuels. 2014. V. 28. N. 7. Р. 4260—4266.
12. Warner G., Hansen T.S., Riisager A., Beach E.S., Barta K., Anastas P. // Bioresour. Technol. 2014. V. 161. P. 78—83.
13. Шарыпов В.И., Кузнецов Б.Н., Яковлев В.А., Береговцова Н.Г., Барышников С.В., Дьякович Л., Пинель К. // Журнал Сибирского федерального университета. Химия. 2015. Т. 8. № 3. С. 465—475.
14. Kleinert M., Barth T. // Energy & Fuels. 2008. V. 22. P. 1371—1379.
15. Macala G.S., Matson T.D., Johnson C.L., Lewis R.S., Iretskii A.V., Ford P.C. // Chem. Sus. Chem. 2009. V. 2. P. 215—217.
16. Heitner C., Dimmel D., Schmidt J. Lignin and Lignans: Advances in Chemistry. 2010. CRC Press. 683 р.
17. Huijgen W.J.J., Reith J.H., den Uil H. // Ind. Eng. Chem. Res. 2010. V. 49. N. 20. P. 10132—10140.
18. Zhao X.B., Cheng K.K., Liu D.H. // Appl. Microbiol. Biotechnol. 2009. V. 82. N. 5. P. 815—819.
19. Ennaert T., Van Aelst J., Dijkmans J., De Clercq R., Schutyser W., Dusselier M., Verboekend D., Sels B.F. // Chem. Soc. Rev. 2016. V. 45. P. 584—611.
20. Wang H., Tucker M., Ji Y. // Journal of Applied Chemistry. 2013. P. 1—9.
21. Sturgeon M.R., O’Brien M.H., Ciesielski P.N., Katahira R., Kruger J.S., Chmely S.C., Hamlin J., Lawrence K., Hunsinger G.B., Foust T.D., Baldwin R.M., Biddy M.J., Beckham G.T. // Green Chem. 2014. V. 16. P. 824—835.
22. Song Q., Wang F., Cai J., Wang Y., Zhang J., Yu W., Xu J. // Energy Environ. Sci. 2013. V. 6. P. 994—1007.
23. Ma R., Hao W., Ma X., Tian Y., Li Y. // Angew. Chem. Int. Ed. 2014. V. 53. P. 7310—7315.
24. Ermakova M.A., Ermakov D.Y. // Appl. Catal. A: General. 2003. V. 245. P. 277—288.
25. Bykova M.V., Ermakov D.Yu., Khromova S.A., Smirnov A.A., Lebedev M.Yu., Yakovlev V.A. // Catal. Today. 2014. V. 220—222. P. 21—31.
26. Quesada-Medina J., López-Cremades F.J., Olivares-Carrillo P. // Bioresour. Technol. 2010. V. 101. P. 8252—8260.
27. Ralph J., Hatfield R.D. // J. Agric Food Chem. 1991. V. 3. P. 1426—1437.
28. Kjällstrand J., Ramnäs O., Petersson G. // J. Chromatogr. A. 1998. V. 824. P. 205—210.
29. Yoshikawa T., Shinohara S., Yagi T., Ryumon N., Nakasaka Y., Tago T., Masuda T. // Appl. Catal. B: Environmental. 2014. V. 146. P. 289—297.
30. Cheng S., Wilks C., Yuan Z., Leitch M., Xu C. // Polym. Degrad. Stab. 2012. V. 97. P. 839—848.
Review
For citations:
Sharypov V.I., Kuznetsov B.N., Yakovlev V.A., Beregovtsova N.G., Baryshnikov S.V. Studies of Thermal Conversion of Acetonelignin in Supercritical Butanol in the Presence of NiCuMo/SiO2 Catalysts. Kataliz v promyshlennosti. 2017;17(1):60-69. (In Russ.) https://doi.org/10.18412/1816-0387-2017-1-60-69