

New Methods for the One-Pot Processing of Polysaccharide Components (Cellulose and Hemicellulose) of Lignocellulose Biomass into Valueable Products. Part 2. Approaches Applied for Biotechnological Processing of Poly- and Monosaccharides into Industrially
https://doi.org/10.18412/1816-0387-2017-1-70-77
Abstract
Part 2 of the Review deals with modern approaches to biotechnological processing of lignocellulosic biomass into value-added products. Among the approaches under consideration are development of more effective enzymes for depolymerization of the biomass components, as well as properties of microorganisms used for fermentation of sugars produced from biomass. Various biotechnological approaches to fermentation of the depolymerization products SHF, SSF, NSSF, SSFF, SSCF and CBP are discussed. It is shown that the main trends in the development of new biotechnological methods for biomass processing are applications of genetic engineering and synthetic biology, as well as minimization of technological stages. It is emphasized that the development of one-stage processing of lignocellulosic biomass is promising for the creation of new effective technologies to produce in-demand materials.
About the Authors
K. N. SorokinaRussian Federation
Yu. V. Samoilova
Russian Federation
A. V. Piligaev
Russian Federation
Uthandi Sivakumar
India
V. N. Parmon
Russian Federation
References
1. Gupta M.N., Raghava S. // Chemistry Central Journal. 2007. Vol. 1. № 1. P. 1-3.
2. Kilbane J.J. // Frontiers in Microbiology. 2016. Vol. 7. P. 86.
3. Cheng S., Zhu S. // Bioresources 2009. Vol. 4. № 2. P. 456—457.
4. Mauser W., Klepper G., Zabel F. et al. // Nature Communications. 2015. Vol. 6. P. 8946.
5. Kumar A., Gautam A., Dutt D. // Advances in Bioscience and Biotechnology. 2016. Vol. 7. P. 149—168.
6. Hermann B.G., Dornburg V., Patel M.K. // Industrial Biotechnology / Wiley-VCH Verlag GmbH & Co. KGaA, 2010. P. 433—455.
7. Громов Н.В. Таран О.П., Сорокина К.Н., Мищенко Т.И., Утанди Ш., Пармон В.Н. // Катализ в промышленности. 2016. Т. 16. № 1. P. 74—83.
8. Akhtar N., Gupta K., Goyal D. et al. // Environmental Progress & Sustainable Energy. 2016. Vol. 35. № 2. P. 489—511.
9. Barton N.R., Burgard A.P., Burk M. J. et al. // Journal of Industrial Microbiology & Biotechnology. 2015. Vol. 42. № 3. P. 349—360.
10. Hong E., Kim D., Kim J. et al. // Biomass and Bioenergy. 2015. Vol. 77. P. 177—185.
11. Sawisit A., Jantama S.S., Kanchanatawee S. et al. // Bioprocess and Biosystems Engineering. 2015. Vol. 38. № 1. P. 175—187.
12. Bai Z., Gao Z., Sun J. et al. // Bioresource Technology. 2016. Vol. 207. P. 346—352.
13. Wyman C.E. // Twenty-Second Symposium on Biotechnology for Fuels and Chemicals / Brian H. Davison, James McMillanMark Finkelstein. - Totowa, NJ: Humana Press, 2001. P. 5—21.
14. Jönsson L., Alriksson B., Nilvebrant N.-O. // Biotechnology for Biofuels. 2013. Vol. 6. № 1. P. 1—10.
15. Volkov P.V., Rozhkova A.M., Gusakov A.V. et al. // Protein Expression and Purification. 2014. Vol. 103. P. 1—7.
16. Ghose T.K., Bisaria V.S. // Biotechnology and Bioengineering. 1979. Vol. 21. № 1. P. 131—146.
17. Woodward J.W.K.S., Zachary G.S., Wohlpart D.L. // Biotechnology and Bioengineering Symposium. 1981. Vol. 11. P. 619—629.
18. Schwarz W.H. // Applied Microbiology and Biotechnology. 2001. Vol. 56. № 5-6. P. 634—649.
19. Булахов А.Г., Гусаков А.В., Чекушина А.В. и др. // Биохимия. 2016. Т. 81. № 5. С. 701—709.
20. Eibinger M., Ganner T., Bubner P. et al. // The Journal of biological chemistry. 2014. Vol. 289. № 52. P. 35929—35938.
21. Fang H., Xia L. // Bioresource Technology. 2013. Vol. 144. № P. 693—697. 22. Tishkov V.I., Gusakov A.V., Cherkashina A.S. et al. // Biochimie. 2013. Vol. 95. № 9. P. 1704—1710.
22. Amano Y., Shiroishi M., Nisizawa K. et al. // The Journal of Biochemistry. 1996. Vol. 120. № 6. P. 1123—1129.
23. Heinzelman P., Snow C.D., Wu I. et al. // Proceedings of the National Academy of Sciences. 2009. Vol. 106. № 14. P. 5610—5615.
24. Cao L.-С., Wang Z.-J., Ren G.-H. et al. // Biotechnology for Biofuels. 2015. Vol. 8. P. 202.
25. Proskurina O.V., Korotkova O.G., Rozhkova A.M. et al. // Applied Biochemistry and Microbiology. 2015. Vol. 51. № 6. P. 667—673.
26. Проскурина О.В., Короткова О.Г., Рожкова А.М. и др. //
27. Прикладная биохимия и микробиология. 2015. Т. 56. № 6. С. 592—599.
28. Gao D., Uppugundla N., Chundawat S.P. et al. // Biotechnology for Biofuels. 2011. Vol. 4. № 1. P. 1—11.
29. Morozova V.V., Gusakov A.V., Andrianov R.M. et al. // Biotechnology Journal. 2010. Vol. 5. № 8. P. 871—880.
30. Ju X., Bowden M., Engelhard M. et al. // Applied Microbiology and Biotechnology. 2014. Vol. 98. № 10. P. 4409—4420.
31. Li C., Knierim B., Manisseri C. et al. // Bioresource Technology. 2010. Vol. 101. № 13. P. 4900—4906.
32. Gladden J.M., Park J.I., Bergmann J. et al. // Biotechnology for Biofuels. 2014. Vol. 7. № 1. P. 1—12.
33. Xu J., He B., Wu B. et al. // Bioresource Technology. 2014. Vol. 157. P. 166—173.
34. Nordwald E.M., Brunecky R., Himmel M.E. et al. // Biotechnology and Bioengineering. 2014. Vol. 111. № 8. P. 1541—1549.
35. Konda N. M., Shi J., Singh S. et al. // Biotechnology for Biofuels. 2014. Vol. 7. № 1. P. 86.
36. Tarek A.A.M., Nagwa A.T. // African Journal of Biotechnology. 2007. Vol. 6. № 8. P. 1048—1054.
37. Liming X., Xueliang S. // Bioresour Technol. 2004. Vol. 91. № 3. P. 259—262.
38. He M., Wu B., Qin H. et al. // Biotechnology for Biofuels. 2014. Vol. 7. № 1. P. 1—15.
39. Liu P., Zhu X., Tan Z. et al. // Advances in Biochemical Engineering/Biotechnology / Th. Scheper, S. Belkin, P.M. Doran et. al. Berlin: Springer Berlin Heidelberg, 2015. P. 1—34.
40. Qin L., Li W. C., Liu L. et al. // Biotechnol Biofuels. 2016. Vol. 9. P. 70.
41. Berlin A., Balakshin M., Gilkes N. et al. // Journal of Biotechnology. 2006. Vol. 125. № 2. P. 198—209.
42. Li B.-Z., Balan V., Yuan Y.-J. et al. // Bioresource Technology. 2010. Vol. 101. № 4. P. 1285—1292.
43. Almeida J.R.M., Modig T., Petersson A. et al. // Journal of Chemical Technology & Biotechnology. 2007. Vol. 82. № 4. P. 340—349.
44. Hassan E.-S. R. E., Mutelet F., Moise J.-C. et al. // RSC Advances. 2015. Vol. 5. № 75. P. 61455—61464.
45. Wang C., Yan D., Li Q. et al. // Bioresource Technology. 2014. Vol. 172. P. 283—289.
46. Ninomiya K., Ogino C., Ishizaki M. et al. // Biochemical Engineering Journal. 2015. Vol. 103. P. 198—204.
47. Öhgren K., Bura R., Lesnicki G. et al. // Process Biochemistry. 2007. Vol. 42. № 5. P. 834—839.
48. Olofsson K., Bertilsson M., Lidén G. // Biotechnology for Biofuels. 2008. Vol. 1. P. 7—7.
49. Davidson J.F., Whyte B., Bissinger P.H. et al. // Proceedings of the National Academy of Sciences of the United States of America. 1996. Vol. 93. № 10. P. 5116—5121.
50. Rodrigues T.H.S., de Barros E.M., de Sá Brígido J. et al. // Applied Biochemistry and Biotechnology. 2016. Vol. 178. № 6. P. 1167—1183.
51. Wu Z., Lee Y.Y. // Applied Biochemistry and Biotechnology. 1998. Vol. 70. № 1. P. 479-492.
52. Ishola M.M., Jahandideh A., Haidarian B. et al. // Bioresource Technology. 2013. Vol. 133. P. 68—73.
53. Singh A., Das K., Sharma D.K. // Industrial & Engineering Chemistry Product Research and Development. 1984. Vol. 23. № 2. P. 257—262.
54. Teixeira L.C., Linden J.C., Schroeder H.A. // Applied Biochemistry and Biotechnology. 2000. Vol. 84. № 1. P. 111—127.
55. Olofsson K., Palmqvist B., Lidén G. // Biotechnology for Biofuels. 2010. Vol. 3. № 1. P. 1—9.
56. Jin M., Gunawan C., Balan V. et al. // Bioresource Technology. 2012. Vol. 110. P. 587—594.
57. Schuster B.G., Chinn M.S. // BioEnergy Research. 2013. Vol. 6. № 2. P. 416—435.
58. den Haan R., van Rensburg E., Rose S.H. et al. // CurrentOpinion in Biotechnology. 2015. Vol. 33. P. 32—38.
59. Chang J.-J., Ho C.-Y., Ho F.-J. et al. // Biotechnology for Biofuels. 2012. Vol. 5. № 1. P. 1—12.
60. Fujita Y., Ito J., Ueda M. et al. // Appl Environ Microbiol. 2004. Vol. 70. № 2. P. 1207—1212.
61. Shin S.K., Hyeon J.E., Kim Y.I. et al. // Biotechnology Journal. 2015. Vol. 10. № 12. P. 1912—1919.
62. Liu Z., Ho S.-H., Sasaki K. et al. // Scientific Reports. 2016. Vol. 6. P. 24550.
63. Lu Y., Zhang Y.H., Lynd L.R. // Proceedings of the National Academy of Sciences of the United States of America. 2006. Vol. 103. № 44. P. 16165-16169.
64. Argyros D.A., Tripathi S.A., Barrett T.F. et al. // Appl. Environ Microbiol. 2011. Vol. 77. № 23. P. 8288—8294.
65. Ronan P., Yeung C.W., Schellenberg J. et al. // Bioresource Technology. 2013. Vol. 129. P. 156—163.
Review
For citations:
Sorokina K.N., Samoilova Yu.V., Piligaev A.V., Sivakumar U., Parmon V.N. New Methods for the One-Pot Processing of Polysaccharide Components (Cellulose and Hemicellulose) of Lignocellulose Biomass into Valueable Products. Part 2. Approaches Applied for Biotechnological Processing of Poly- and Monosaccharides into Industrially. Kataliz v promyshlennosti. 2017;17(1):70-77. (In Russ.) https://doi.org/10.18412/1816-0387-2017-1-70-77