

New Methods for the One-Pot Processing of Polysaccharide Components (Cellulose and Hemicellulose) of Lignocellulose Biomass into Valueable Products. Part 3. The Products Obtained by Biotechnological Processing of Polyand Mono-Saccharides of Biomass
https://doi.org/10.18412/1816-0387-2017-1-78-85
Abstract
Part 3 of the Review is devoted to modern aspects of the production of important chemicals such as ethanol, n-butanol, isobutanol, 2,3-butanediol, lactic and amber acids using biotechnological processes for treatment of cellulose biomass. Various approaches (including SHF, SSF, SSCF and CBP) to preparation of the target compounds are compared. It is shown that the consolidates lignocellulose processing is promising for the direct synthesis of the target compounds via fermentation but still less effective than the other employed processes. The progress in genetic engineering of microorganisms and application of methods of systems biology will allow more effective producers and improved biotechnological processes based thereon to be created.
About the Authors
K. N. SorokinaRussian Federation
Yu. V. Samoilova
Russian Federation
A. V. Piligaev
Russian Federation
Uthandi Sivakumar
India
V. N. Parmon
Russian Federation
References
1. Demirbaş A. // Energy Conversion and Management. 2001. Vol. 42. № 11. P. 1357—1378.
2. Gromov N.V., Taran O.P., Sorokina K.N. et al. // Catalysis in Industry. 2016. Vol. 8. № 2. P. 176—186.
3. Zeng A., Biebl H. // Tools and Applications of Biochemical Engineering Science / K. Schügerl, A. Zeng, J.G. Aunins et. al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. P. 239—259.
4. Cok B., Tsiropoulos I., Roes A.L. et al. // Biofuels, Bioproducts and Biorefining. 2014. Vol. 8. № 1. P. 16—29.
5. Ghaffar T., Irshad M., Anwar Z. et al. // Journal of Radiation Research and Applied Sciences. 2014. Vol. 7. № 2. P. 222—229.
6. Brosse N., Dufour A., Meng X. et al. // Biofuels, Bioproducts and Biorefining. 2012. Vol. 6. № 5. P. 580—598.
7. Devappa R. K., Rakshit S. K., Dekker R.F.H. // Biotechnology Advances. 2015. Vol. 33. № 6, Part 1. P. 681-716.
8. Wang L., Wang J.G., Littlewood J. et al. // Green Chemistry. 2014. Vol. 16. № 3. P. 1527—1533.
9. Tyner W.E. // BioScience. 2008. Vol. 58. № 7. P. 646—653.
10. Slade R., Bauen A., Shah N. // Biotechnology for Biofuels. 2009. Vol. 2. P. 15.
11. Shukor H., Abdeshahian P., Al-Shorgani N.K.N. et al. // Bioresource Technology. 2016. Vol. 202. P. 206—213.
12. Lin P. P., Mi L., Morioka A.H. et al. // Metabolic Engineering. 2015. Vol. 31. P. 44—52.
13. Jiang L., Fang Z., Zhao Z. et al. // Bioresources. 2015. Vol. 10. № 1. P. 1318—1329.
14. Bai Z., Gao Z., Sun J. et al. // Bioresource Technology. 2016.Vol. 207. P. 346—352.
15. Sawisit A., Jantama S.S., Kanchanatawee S. et al. // Bioprocess and Biosystems Engineering. 2015. Vol. 38. № 1. P. 175—187.
16. Суходолов А.П., Хаматаев В.А. // Известия Иркутской государственной экономической академии. 2009. № 3 (65). P. 49—52.
17. Nikolić S., Mojović L., Djukić-Vuković A. // Causes, Impacts and Solutions to Global Warming / Ibrahim Dincer, Ozgur Can ColpanFethi Kadioglu. New York, NY: Springer New York, 2013. P. 627—642.
18. Fonseca G.G., Heinzle E., Wittmann C. et al. // Applied Microbiology and Biotechnology. 2008. Vol. 79. № 3. P. 339—354.
19. Nuanpeng S., Thanonkeo S., Yamada M. et al. // Energies. 2016. Vol. 9. № 4. P. 253.
20. Liu Z.-H.,Chen H.-Z. // Bioresource Technology. 2016. Vol. 201. P. 15—26.
21. Cha Y.-L., An G.H., Yang J. et al. // Renewable Energy. 2015. Vol. 80. P. 259—265.
22. Макарова Е.И. // Химия в интересах устойчивого развития. 2013. Т. 2. С. 219—225.
23. Скиба Е.А., Будаева В.В., Павлов И.Н. и др. // Биотехнология. 2012. Т. 6. С. 42—52.
24. Koppram R., Olsson L. // Biotechnology for Biofuels. 2014. Vol. 7. P. 54—54.
25. De Cassia Pereira J., Travaini R., Paganini Marques N. et al. // Bioresource Technology. 2016. Vol. 204. P. 122—129.
26. Nichols N.N., Hector R.E., Saha B.C. et al. // Biomass and Bioenergy. 2014. Vol. 67. P. 79—88.
27. Choi G., Moon S., Kang H. et al. // Journal of Chemical Technology & Biotechnology. 2009. Vol. 84. № 4. P. 547—553.
28. Jung Y.H., Kim I.J., Kim H.K. et al. // Bioprocess and Biosystems Engineering. 2014. Vol. 37. № 4. P. 659—665.
29. Rodrigues T.H.S., de Barros E.M., de Sá Brígido J. et al. //Applied Biochemistry and Biotechnology. 2016. Vol. 178. № 6. P. 1167—1183.
30. Gurram R.N., Al-Shannag M., Lecher N.J. et al. // Bioresource Technology. 2015. Vol. 192. P. 529—539.
31. Alamanou D.G., Malamis D., Mamma D. et al. // Waste and Biomass Valorization. 2015. Vol. 6. № 3. P. 353—361.
32. Kuila A., Banerjee R. // Bioprocess and Biosystems Engineering. 2014. Vol. 37. № 10. P. 1963—1969.
33. Capecchi L., Galbe M., Wallberg O. et al. // Biomass and Bioenergy. 2016. Vol. 90. P. 22—31.
34. Kim I., Lee I., Jeon S.H. et al. // Bioresource Technology. 2015. Vol. 192. P. 335—339.
35. Ahmed I.N., Nguyen P.L.T., Huynh L.H. et al. // Bioresource Technology. 2013. Vol. 136. P. 213—221.
36. Chen H., Zhao J., Hu T. et al. // Applied Energy. 2015. Vol. 150. P. 224-232.
37. Soudham V.P., Raut D.G., Anugwom I. et al. // Biotechnology for Biofuels. 2015. Vol. 8. № 1. P. 1—13.
38. Ninomiya K., Ogino C., Ishizaki M. et al. // Biochemical Engineering Journal. 2015. Vol. 103. P. 198—204.
39. Zhu J., Qin L., Li B. et al. // Bioresource Technology. 2014. Vol. 169. P. 9—18.
40. Erdei B., Frankó B., Galbe M. et al. // Journal of Biotechnology. 2013. Vol. 164. № 1. P. 50—58.
41. Sasaki K., Tsuge Y., Sasaki D. et al. // Bioresource Technology. 2015. Vol. 185. P. 263—268.
42. Ishola M.M., Jahandideh A., Haidarian B. et al. // Bioresource Technology. 2013. Vol. 133. P. 68—73.
43. Wu Z., Lee Y.Y. // Applied Biochemistry and Biotechnology. 1998. Vol. 70. № 1. P. 479—492.
44. Agbogbo F.K., Coward-Kelly G. // Biotechnol Lett. 2008. Vol. 30. № 9. P. 1515—1524.
45. Castro R.C., Roberto I.C. // Applied Biochemistry and Biotechnology. 2014. Vol. 172. № 3. P. 1553—1564.
46. Ryabova O.B., Chmil O.M., Sibirny A.A. // FEMS Yeast Res. 2003. Vol. 4. № 2. P. 157—164.
47. Beck M. // Biotechnol Lett. 1986. Vol. 8. № 7. P. 513—516.
48. Nonklang S., Abdel-Banat B.M., Cha-aim K. et al. // Appl Environ Microbiol. 2008. Vol. 74. № 24. P. 7514—7521.
49. Signori L., Passolunghi S., Ruohonen L. et al. // Microb Cell Fact. 2014. Vol. 13. № 1. P. 51.
50. Camargo D., Gomes S. D., Sene L. // Bioprocess and Biosystems Engineering. 2014. Vol. 37. № 11. P. 2235—2242.
51. Nachaiwieng W., Lumyong S., Yoshioka K. et al. // Biocatalysis and Agricultural Biotechnology. 2015. Vol. 4. № 4. P. 543—549.
52. Wang R., Li L., Zhang B. et al. // J. Ind. Microbiol. Biotechnol. 2013. Vol. 40. № 8. P. 841—854.
53. Feng C., Zou S., Liu C. et al. // World Journal of Microbiology and Biotechnology. 2016. Vol. 32. № 5. P. 1—7.
54. Hasunuma T., Hori Y., Sakamoto T. et al. // Microbial Cell Factories. 2014. Vol. 13. P. 145.
55. Tolonen A. C., Zuroff T. R., Ramya M. et al. // Applied and Environmental Microbiology. 2015. Vol. 81. № 16. P. 5440—5448.
56. Kojima M., Okamoto K., Yanase H. // Applied Microbiology and Biotechnology. 2013. Vol. 97. № 11. P. 5137—5147.
57. Treebupachatsakul T., Shioya K., Nakazawa H. et al. // Journal of Bioscience and Bioengineering. 2015. Vol. 120. № 6.
58. P. 657—665. 58. Aakko-Saksa P.T., Rantanen-Kolehmainen L., Skyttä E. // Environmental Science & Technology. 2014. Vol. 48. № 17. P. 10489—10496.
59. Егоров Н.С. // Промышленная микробиология. М.: Высшая школа, 1989.
60. Ezeji T., Milne C., Price N.D. et al. // Applied Microbiology and Biotechnology. 2010. Vol. 85. № 6. P. 1697—1712.
61. Pang Z.-W., Lu W., Zhang H. et al. // Bioresource Technology. 2016. Vol. 212. P. 82—91.
62. Qureshi N., Singh V., Liu S. et al. // Bioresource Technology. 2014. Vol. 154. P. 222—228.
63. Wang Z., Cao G., Zheng J. et al. // Biotechnology for Biofuels. 2015. Vol. 8. P. 84.
64. Rajagopalan G., He J.,Yang K.-L. // Renewable Energy. 2016. Vol. 85. P. 1127—1134.
65. Mack J.H., Schuler D., Butt R.H. et al. // Applied Energy. 2016. Vol. 165. P. 612—626.
66. Atsumi S., Wu T.-Y., Eckl E.-M. et al. // Applied Microbiology and Biotechnology. 2010. Vol. 85. № 3. P. 651—657.
67. Li S., Wen J., Jia X. // Applied Microbiology and Biotechnology. 2011. Vol. 91. № 3. P. 577—589.
68. Blombach B., Riester T., Wieschalka S. et al. // Appl Environ Microbiol. 2011. Vol. 77. № 10. P. 3300—3310.
69. González-Ramos D., van den Broek M., van Maris A. et al. // Biotechnology for Biofuels. 2013. Vol. 6. № 1. P. 1—18.
70. Baez A., Cho K.-M., Liao J. // Applied Microbiology and Biotechnology. 2011. Vol. 90. № 5. P. 1681—1690.
71. Brat D., Boles E. // FEMS Yeast Res. 2013. Vol. 13. № 2. P. 241—244.
72. Köpke M., Mihalcea C., Liew F. et al. // Applied and Environmental Microbiology. 2011. Vol. 77. № 15. P. 5467—5475.
73. Qin J., Xiao Z., Ma C. et al. // Chinese Journal of Chemical Engineering. 2006. Vol. 14. № 1. P. 132—136.
74. Anvari M., Safari Motlagh M.R. // Journal of Biomedicine and Biotechnology. 2011. Vol. 2011.
75. Perego P., Converti A., Del Borghi A. et al. // Bioprocess Engineering. 2000. Vol. 23. № 6. P. 613—620.
76. Lian J., Chao R., Zhao H. // Metabolic Engineering. 2014. Vol. 23. P. 92—99.
77. Białkowska A.M., Gromek E., Krysiak J. et al. // Journal of Industrial Microbiology & Biotechnology. 2015. Vol. 42. № 12. P. 1609—1621.
78. Hofvendahl K., Hahn—Hägerdal B. // Enzyme and Microbial Technology. 2000. Vol. 26. № 2—4. P. 87—107.
79. Ou M., Mohammed N., Ingram L.O. et al. // Applied Biochemistry and Biotechnology. 2009. Vol. 155. № 1-3. P. 76—82.
80. Marques S., Santos J.A.L., Gírio F.M. et al. // Biochemical Engineering Journal. 2008. Vol. 41. № 3. P. 210—216.
81. Ito Y., Hirasawa T., Shimizu H. // Bioscience, Biotechnology, and Biochemistry. 2014. Vol. 78. № 1. P. 151—159.
82. Hodge D.B., Andersson C., Berglund K.A. et al. // Enzyme and Microbial Technology. 2009. Vol. 44. № 5. P. 309—316.
83. Song H., Lee S.Y. // Enzyme and Microbial Technology. 2006. Vol. 39. № 3. P. 352—361.
84. Chen P., Tao S., Zheng P. // Bioresource Technology. 2016. Vol. 211. P. 406—413.
85. Salvachúa D., Mohagheghi A., Smith H. et al. // Biotechnology for Biofuels. 2016. Vol. 9. P. 28.
Review
For citations:
Sorokina K.N., Samoilova Yu.V., Piligaev A.V., Sivakumar U., Parmon V.N. New Methods for the One-Pot Processing of Polysaccharide Components (Cellulose and Hemicellulose) of Lignocellulose Biomass into Valueable Products. Part 3. The Products Obtained by Biotechnological Processing of Polyand Mono-Saccharides of Biomass. Kataliz v promyshlennosti. 2017;17(1):78-85. (In Russ.) https://doi.org/10.18412/1816-0387-2017-1-78-85