

Hydrocracking of Vacuum Gasoil over Trimetal NiMoW/ААС-Al2O3 Catalysts: The Influence of W : Mo Ratio
https://doi.org/10.18412/1816-0387-2017-5-373-382
Abstract
The influence of the atomic W / (W + Mo) ratio in trimetal NiMoW catalysts on their catalytic and physicochemical properties was studied. The catalysts were prepared by impregnating the support consisting of amorphous aluminosilicate (AAS) and alumina with the aqueous solution of Ni, Mo, W compounds and citric acid. The catalysts were studied using XPS, TEM, NH3 TPD, low-temperature nitrogen adsorption techniques and tested for hydrocracking of vacuum gasoil (VGO). The active sulfide component layer was discovered to decrease in average length as the Mo content increased and W content decreased in the catalyst. From XPS data, the degree of tungsten sulfiding was lower in the trimetal NiMoW catalysts than in the NiW catalyst. The catalyst testing for hydrocracking of straight run VGO (390–420 °C, 16 MPa, feed flow rate 0.71 h–1, H2 : VGO = 1200 L/L) revealed that an increase in the W / (W + Mo) ratio led to an increase in the catalyst activity to hydrodesulfurization, hydrodenitrogenation, hydration, and to hydrocracking. NiW catalysts were more active than NiMo catalysts to the target reactions of VGO hydrocracking at high pressure and low sulfur content in the raw feedstock.
About the Authors
P. P. DikRussian Federation
V. Yu. Pereima
Russian Federation
K. A. Nadeina
Russian Federation
M. O. Kazakov
Russian Federation
O. V. Klimov
Russian Federation
E. Yu. Gerasimov
Russian Federation
I. P. Prosvirin
Russian Federation
A. S. Noskov
Russian Federation
References
1. J.K. Minderhoud, J.A.R.v. Veen, A.P. Hagan // Hydrotreatment and Hydrocracking of Oil Fractions, B. Delmon, G.F. Froment, P. Grange (Eds.), Elsevier Science B.V. (1999) 3—20.
2. J.W. Ward // Fuel Process. Technol., 35 (1993) 55—85.
3. H. Yasuda, M. Higo, S. Yoshitomi, T. Sato, M. Imamura, H. Matsubayashi, H. Shimada, A. Nishijima, Y. Yoshimura // Catal. Today, 39 (1997) 77.
4. T. Halacheva, R. Navaa, L. Dimitrov // Appl. Catal., A, 169 (1998) 111—117.
5. M.A. Ali, T. Tatsumi, T. Masuda // Appl. Catal., A, 233 (2002) 77—90.
6. T. Kabe, Y. Aoyama, D. Wang, A. Ishihara, W. Qian, M. Hosoya, Q. Zhang // Appl. Catal., A, 209 (2001) 237—247.
7. R. Silva Rodrigo, C. Calderon Salas, J.A. Melo Banda, J.M. Dominguez, A. Vazquez Rodriguez // Catal. Today, 98 (2004) 123—129.
8. C. Thomazeau, C. Geantet, M. Lacroix, M. Danot, V. Harlé, P. Raybaud // Appl. Catal., A, 322 (2007) 92—97.
9. J.A. Mendoza-Nieto, O. Vera-Vallejo, L. Escobar-Alarcón, D. Solís-Casados, T. Klimova // Fuel, 110 (2013) 268—277.
10. M.E. Cervantes-Gaxiola, M. Arroyo-Albiter, A. Pérez-Larios, P.B. Balbuena // J. Espino-Valencia, Fuel, 113 (2013) 733—743.
11. L. van Haandel, M. Bremmer, P.J. Kooyman, J.A.R. van Veen, T. Weber, E.J.M. Hensen // ACS Catalysis, 5 (2015) 7276—7287.
12. M. Absi-Halabi, A. Stanislaus, K. Al-Dolama // Fuel, 77 (1998) 787—790.
13. S. Chen, T. Li, G. Cao, M. Guan. Patent US 6399530 (2002).
14. A.S. Ivanova, E.V. Korneeva, G.A. Bukhtiyarova, A.L. Nuzhdin, A.A. Budneva, I.P. Prosvirin, V.I. Zaikovskii, A.S. Noskov // Kinet. Catal. 52 (2011) 446—458.
15. C.E. Scott, M.J. Perez-Zurita, L.A. Carbognani, H. Molero, G. Vitale, H.J. Guzmán, P. Pereira-Almao // Catal. Today, 250 (2015) 21—27.
16. M.H. Zhang, J.Y. Fan, K. Chi, A.J. Duan, Z. Zhao, X.L. Meng, H.L. Zhang // Fuel Process. Technol., 156 (2017) 446—453.
17. C. Wang, D. Wang, Z. Wu, Z. Wang, C. Tang, P. Zhou // Appl. Catal., A, 476 (2014) 61—67.
18. E. Rodríguez-Castellón, A. Jiménez-López, D. Eliche-Quesada // Fuel, 87 (2008) 1195—1206.
19. A.P. Shpak, A.M. Korduban, M.M. Medvedskij, V.O. Kandyba // J. Electron. Spectrosc. Relat. Phenom., 156—158 (2007) 172—175.
20. Y. Yi, C.T. Williams, M. Glascock, G. Xiong, J. Lauterbach, C. Liang // Mater. Res. Bull., 56 (2014) 54—64.
21. S. Eijsbouts // Appl. Catal., A, 158 (1997) 53—92.
22. S. Eijsbouts, L.C.A. van den Oetelaar, R.R. van Puijenbroek // J. Catal., 229 (2005) 352—364.
23. P. Dufresne, P.H. Bigeard, A. Billon // Catal. Today, 1 (1987) 367—384.
24. V.Y. Pereyma, P.P. Dik, O.V. Klimov, S.V. Budukva, K.A. Leonova, A.S. Noskov // Russ. J. Appl. Chem., 88 (2015) 1969—1975.
25. H. Yasuda, M. Higo, S. Yoshitomi, T. Sato, M. Imamura, H. Matsubayashi, H. Shimada, A. Nishijima, Y. Yoshimura // Catal. Today, 39 (1997) 77—87.
26. M.A. Ali, T. Tatsumi, T. Masuda // Appl. Catal., A, 233 (2002) 77—90.
Review
For citations:
Dik P.P., Pereima V.Yu., Nadeina K.A., Kazakov M.O., Klimov O.V., Gerasimov E.Yu., Prosvirin I.P., Noskov A.S. Hydrocracking of Vacuum Gasoil over Trimetal NiMoW/ААС-Al2O3 Catalysts: The Influence of W : Mo Ratio. Kataliz v promyshlennosti. 2017;17(5):373-382. (In Russ.) https://doi.org/10.18412/1816-0387-2017-5-373-382