

The Application of the Inducible Promoter of Glucoamylase Gene for Preparation of New Multienzyme Complexes Penicillium verruculosum
https://doi.org/10.18412/1816-0387-2017-5-407-413
Abstract
A new plasmid construction based on the inducible promoter of glucoamylase gene (gla1) was used for the obtaining of new recombinant strains Penicillium verruculosum that secrete heterological xylanase E (XylE) P. canescens. New biocatalysts were developed which are XylEenriched cellulolytic enzyme preparations (EP). The content of XylE in recombinant EP varied within the optimal range from 11 to 24 % of the general protein pool at the preservation (in total) of the cellulase complex P. verruculosum. In comparison to EP prepared using the other expression systems and commercial preparations, the new EP demonstrated a higher hydrolytic activity with respect to polymers of plant substrates. For example, the efficiency of new EP glaX-17 to hydrolysis of aspenwood was higher by 13 % than that of the control EP agent and by 20 % than that of the commercial EP Accelerase Duet. In hydrolysis of wheat bran, glaX-17 was 35–43 % and 25 % more efficient than the control EP and the commercial EP Accelerase Duet, respectively. The efficiency of the new gla1 promoter for the production of EP (biocatalysts) at the preserved balanced cellulase complex of the strain and optimal yield of heterological XylE (that are necessary for complete hydrolysis of xylan-containing plant biomass) was demonstrated.
About the Authors
A. P. SinitsynRussian Federation
P. V. Volkov
Russian Federation
E. A. Rubtsova
Russian Federation
I. A. Shashkov
Russian Federation
A. M. Rozhkova
Russian Federation
O. A. Sinitsyna
Russian Federation
E. G. Kondratieva
Russian Federation
I. N. Zorov
Russian Federation
A. D. Satrudinov
Russian Federation
D. A. Merzlov
Russian Federation
V. J. Matys
Russian Federation
References
1. Balat M. // Energy Conversion and Management. 2011. Vol. 52. P. 858—875.
2. Adsul. M.G., Singhvi M.S., Gaikaiwari S.A., Gokhale D.V. // Bioresource Technology. 2011. Vol. 102. P. 4304—4312.
3. Bauer S., Vasu P., Persson S., Mort A., Somerville C. // Proc. Natl. Acad. Sci. USA. 2006; 103(30): 11417—11422.
4. Pragya Tiwari, Misra B.N., Neelam S. Sangwan // BioMed Research International, 2013, Article ID 203735, 10 pages, http://dx.doi.org/10.1155/2013/203735.
5. J.A. Teixeira, D.B. Gonc¸alves, M.V. de Queiroz and E.F. de Araujo // Journal of Applied Microbiology. 2011. 111. 818—825.
6. Liwei Gao , Zhonghai Li, Chengqiang Xia, Yinbo Qu, Meng Liu, Piao Yang, Lele Yu and Xin Song // Biotechnol Biofuels (2017) 10:100, DOI 10.1186/s13068-017-0783-3.
7. Соловьева И.В., Окунев О.Н., Вельков В.В., Кошелев А.В., Бубнова Т.В., Кондратьева Е.Г., Скомаровский А.А., Синицын А.П // Микробиология. 2005. Т .74. С. 1—7.
8. Синицын А.П., Осипов Д.О., Рожкова А.М., Бушина Е.В., Доценко Г.С., Синицына О.А., Кондратьева Е.Г., Немашкалов В.А., Матыс В.Ю., Кошелев А.В., Окунев О.Н. // Биотехнология. 2013. № 5. С. 50—53.
9. Ilmén M., Saloheimo A., Onnela M., Penttilä M. // Applied and Environmental Microbiology. 1997. Vol. 63. P. 1298—1306.
10. Правильников А.Г. Дис. … канд. хим. наук. М.: Изд-во МГУ, 2012. 104 с.
11. Мерзлов Д.А., Зоров И.Н., Доценко Г.С., Денисенко Ю.А., Рожкова А.М., Сатрутдинов А.Д., Рубцова Е.А., Кондратьева Е.Г, Синицын А.П. // Биохимия. 2015. Т. 80. Вып. 4. С. 556—567.
12. Volkov P.V., Rozhkova A.M., Gusakov A.V., Zorov I.N., Sinitsyn A.P. // Biochimie. 2015. Vol. 110. P. 45—51.
13. Bulakhov A.G., Volkov P.V., Rozhkova A.M., Gusakov A.V., Nemashkalov V.A., Sinitsyn A.P. PLOS ONE, 2017 Jan 20;12(1): e0170404. doi: 10.1371/journal.pone.0170404. eCollection 2017.
14. Pisanelli I., Kujawa M., Gschnitzer D., Spadiut O., Seiboth B., Peterbauer C. // Appl. Microbiol. Biotechnol. 86(2). P. 599—606.
15. Inoue H., Fujii T., Yoshimi M., Taylor L., Decker S., Kishishita S., Nakabayashi M., Ishikawa K. // J. Ind. Microbiol. Biotechnol. 2013 Aug; 40(8). P. 823—30.
16. N. Nelson // J. Biol. Chem. 1944. Vol. 153. P. 375—379.
17. M. Somogyi // J. Biol. Chem. 1952. Vol. 195. P. 19—23.
18. Синицын А.П., Черноглазов В.М., Гусаков А.В. Методы изучения и свойства целлюлолитических ферментов. Итоги науки и техники. Сер. Биотехнология. М.: ВИНИТИ, 1990. 290 с.
19. Peterson G.L. // Analytical Biochemistry. 1979. Vol. 100(2). P. 201—220.
20. Aleksenko A.Y., Makarova N.A., Nikolaev I.V., Clutterbuch A.J. // Current Genetic. 1995. Vol. 28. P. 474—478.
21. Синицын А.П., Рубцова Е.А., Шашков И.А, Рожкова А.М., Синицына О.А., Кондратьева Е.Г., Зоров И.Н., Мерзлов Д.А., Осипов Д.О., Матыс В.Ю. // Катализ в промышленности. 2017. № 4. С. 331—338.
22. Yoji H., Katsuhiko K., Katsuya G., Chieko K., Gakuzo T. // Curr Genet. 1992. Vol. 22. P. 89—91.
23. Gabrielii I., Gatenholm P., Glasser W.G., Jain R.K., Kenne L. // Carbohydrate Polymers. 2000. Vol. 43. P. 367—374.
24. Sun R.C., Tomkinson J., Wang Y.X., Xiao B. // Polymer. 2000. Vol. 41. P. 2647—2656.
Review
For citations:
Sinitsyn A.P., Volkov P.V., Rubtsova E.A., Shashkov I.A., Rozhkova A.M., Sinitsyna O.A., Kondratieva E.G., Zorov I.N., Satrudinov A.D., Merzlov D.A., Matys V.J. The Application of the Inducible Promoter of Glucoamylase Gene for Preparation of New Multienzyme Complexes Penicillium verruculosum. Kataliz v promyshlennosti. 2017;17(5):407-413. (In Russ.) https://doi.org/10.18412/1816-0387-2017-5-407-413