

Mathematical Modelling of Biocatalytic Transformation of Methyl Phenyl Sulfide into (R)-sulfoxide
https://doi.org/10.18412/1816-0387-2017-5-414-422
Abstract
A mathematical model was suggested to describe the process of biotransformation of methyl phenyl sulfide to (R)-sulfoxide using immobilized cells Gordonia terrae IEGM 136. The experimental data were the base for determining kinetic regularities of the methyl phenyl sulfide biotransformation depending on the initial sulfide concentration and the biocatalyst quantity. The experimental data were compared to the results of mathematical modeling of scaling-up the process in a laboratory bioreactor. A mathematical model was developed to describe the said process with the re-used biocatalyst. The data obtained can be used for optimization of biotransformation of a wide range of organic alkylarylsulfides to produce optically active sulfoxides.
About the Authors
A. A. ElkinRussian Federation
T. I. Kylosova
Russian Federation
M. A. Osipenko
Russian Federation
Y. I. Nyashin
Russian Federation
V. V. Grishko
Russian Federation
I. B. Ivshina
Russian Federation
References
1. Wojaczyńska E., Wojaczyński J. // Chemical Reviews. 2010. Vol. 110. P. 4303—4356.
2. O’Mahony G.E., Ford A., Maguire A.R. // Journal of Sulfur Chemistry. 2013. Vol. 34. № 3. P. 301—341.
3. Carreno M.C., Ribagorda M., Somoza A., Urbano A. // Angewandte Chemie International Edition. 2002. Vol. 41. P. 2755—2757.
4. De la Pradilla R.F., Simal C., Bates R.H., Viso A., Infantes L. // Organic Letters. 2013. Vol. 15. № 19. P. 4936—4939.
5. Raghavan S., Rathore K. // Tetrahedron. 2009. Vol. 65. P. 10083— 10092.
6. Raghavan S., Krishnaiah V., Sridhar B. // Journal of Organic Chemistry. 2010. Vol. 75. P. 498—501.
7. Chen Y., Zhuo J., Zheng D., Tian S., Li Z. // Journal of Molecular Catalysis B: Enzymatic. 2014. Vol. 106. P. 100—104.
8. Matsui T., Dekishima Y., Ueda M. // Applied Microbiology and Biotechnology. 2014. Vol. 98. P. 7699—7706.
9. Елькин А.А., Гришко В.В., Ившина И.Б. // Прикладная биохимия и микробиология. 2010. Т. 46. № 6. С. 637—643.
10. Mascotti M.L., Ordena A.A., Bisogno F.R., de Gonzalo G., Kurina-Sanz M. // Journal of Molecular Catalysis B: Enzymatic. 2012. Vol. 82. P. 32—36.
11. Verbelen P.J., de Schutter D.P., Delvaux F., Verstrepen K.J., Delvaux F.R. // Biotechnology Letters. 2006. Vol. 28. P. 1515—1525.
12. Kisukuri C.M., Andrade L.H. // Organic and Biomolecular Chemistry. 2015. Vol. 13. P. 10086—10107.
13. Lozinsky V.I., Galaev I.Yu., Plieva F.M., Savina I.N., Jungvid H., Mattiasson B. // Trends in Biotechnology. 2003. Vol. 21. P. 445—451.
14. Hassan C.M., Peppas N.A. // Advances in Polymer Science. 2000. Vol. 153. P. 37—65.
15. Elkin A.A., Kylosova T.I., Grishko V.V., Ivshina I.B. // Journal of Molecular Catalysis B: Enzymatic. 2013. Vol. 89. P. 82—85.
16. Kylosova T.I., Elkin A.A., Grishko V.V., Ivshina I.B. // Journal of Molecular Catalysis B: Enzymatic. 2016. Vol. 123. P. 8—13.
17. Atlas R.T. Florida: CRC Press. 1993. рр.1079.
18. Kuyukina M.S., Ivshina I.B., Gavrin A.Y., Podorozhko E.A., Lozinsky V.I., Jeffree C.E., Philp J.C. // Journal of Microbiological Methods. 2006. Vol. 65. P. 596—603.
19. Grishko V.V., Ivshina I.B., Tolstikov A.G. // Biotechnology in Russia. 2004. Vol. 5. P. 69—77.
20. Li A.-T., Zhang J.-D., Yu H.-L., Pan J., Xu J.-H. // Process Biochemistry. 2011. Vol. 46. P. 689—694.
21. Линник Ю.В. Метод наименьших квадратов и основы математико-статистической обработки наблюдений. М.: Физматгиз. 1962. 349 с.
22. Ramadhan S.H., Matsui T., Nakano K., Minami H. // Applied Microbiology and Biotechnology. 2013. Vol. 97. P. 1903—1907.
Review
For citations:
Elkin A.A., Kylosova T.I., Osipenko M.A., Nyashin Y.I., Grishko V.V., Ivshina I.B. Mathematical Modelling of Biocatalytic Transformation of Methyl Phenyl Sulfide into (R)-sulfoxide. Kataliz v promyshlennosti. 2017;17(5):414-422. (In Russ.) https://doi.org/10.18412/1816-0387-2017-5-414-422