

Biocatalytic Production of Extracellular Exopolysaccharide – Dextran Synthesizing by Leuconostoc mesenteroides Cells
https://doi.org/10.18412/1816-0387-2017-2-161-165
Abstract
The article presents results of investigation and comparative analysis of process characteristics of commercially important dextran production from sucrose by using immobilized cells of bacteria Leuconostoc mesenteroides subsp. dextranicum B–5481 in forms of free and immobilized into poly(vinyl alcohol) cryogel. It was shown that dextran concentration was 1.2 times higher up to 1.2 times when immobilized cells were used in comparison with suspended cells under identical process conditions. The high process productivity was revealed (4.2 g/l/h) under batch fermentation conditions for immobilized cells in addition to their prolonged operation activity without any loss of metabolic activity for at least 5 working cycles. In comparison with analogues the productivity of developed biocatalyst was 5 times higher than that of Weissella confusa cells immobilized in calcium alginate gel, and 34-times higher as compared to Leuconostoc mesenteroides KIBGE HA1 cells entrapped into polyacrylamide gel. Samples of dextran produced by immobilized cells L. mesenteroides B -5481 had twice lower molecular weight as compared to the polymer synthesized by free cells. This characteristic expands the range of possible applications of the obtained polysaccharide without need in its additional hydrolysis.
About the Authors
N. А. StepanovRussian Federation
О. V. Senko
Russian Federation
Е. N. Еfremenko
Russian Federation
References
1. Vettoria M.H.P.B., Blancoa KC., Cortezia M, de Lima C.J.B., Contieroa J. // Diálogos Ciência. 31 (2012). P. 171-186.
2. Naessens M., Cerdobbel A., Soetaert W., Vandamme E.J. // J. Chem. Technol. Biotechnol. 80 (2005). P. 845—860.
3. Aman A., Siddiqui N.N., Qader S.A.U. // Carbohydr. Polymer. 87 (2010). P. 910—915.
4. Welman A.D., Maddox I.S. // Trends Biotechnol. 21 (2003). P. 269—274.
5. Moscovici M. // Front Microbiol. 6 (2015). P. 1012.
6. Milintawisamai N., Niamsanit S, Ngasan C, Pliansinchai U, Weerathaworn P. // Sugar Tech. 11 (2009). P. 196-199.
7. Efremenko E.N., Nikolskaya A.B., Lyagin I.V., Senko O.V., Stepanov N.A., Maslova O.V., Mamedova F., Varfolomeyev S.D. // Bioresource Technol. 114 (2012). P. 342—348.
8. Qader S.A.U., Aman A., Azhar A. // Indian J. Microbiol. 51 (2011). P. 279—282.
9. Srinivas B., Padma P.N. // Int. J. Pharm. Bio Sci. 7 (2016). P. 336—340.
10. Lozinsky V.I., Plieva F.M. // Enzyme Microb. Technol. 23 (1998). P. 227-242.
11. Onilude A.A., Olaoye O., Fadahunsi I.F., Owoseni A., Garuba E.O., Atoyebi T. // IFRJ. 20 (2013). P. 1645-1651.
12. Abdel-Azeem H.M., Gehan F., Hassan E.A. // Ann Agr Sci. 54 (2009). P. 307-321.
13. Nuwan P., Piwpan P., Jaturapiree A., Jaturapiree P. // KKU Res J. 22 (2016). P. 366-375.
14. Kim D., Robyt J.F., Lee S.Y., Lee J.H., Kim Y.M. // Carbohydr Res. 338 (2003). P. 1183-1189.
15. Sarwat F.Q., Aman S.A., Ahmed N. // Int. J. Biol. Sci. 4 (2008). P. 379-386.
16. Cortezi M., Monti R., Contiero J. // Afr. J. Biotechnol. 4 (2005). P. 279-285.
17. Santos M., Teixeira J.A., Rodrigues A. // Biochem. Eng. J. 4 (2000). P. 177-188.
18. Son M-J., Jang E-K., Kwon O-S., Seo J-H., Kim I-J., Lee I-S., Park S-C., Lee S-P. // Eur. Food Res. Technol. 226 (2008). P. 697—706.
Review
For citations:
Stepanov N.А., Senko О.V., Еfremenko Е.N. Biocatalytic Production of Extracellular Exopolysaccharide – Dextran Synthesizing by Leuconostoc mesenteroides Cells. Kataliz v promyshlennosti. 2017;17(2):161-165. (In Russ.) https://doi.org/10.18412/1816-0387-2017-2-161-165