

H2S Resistant Bifunctional Catalyst for Steam Reforming of Methane: Activity and Structural Evolution
https://doi.org/10.18412/1816-0387-2017-3-201-209
Abstract
Results of studying an iron-nickel catalyst for steam reforming of methane, which was prepared by epitaxial deposition of the coat on the surface of spherical granules of commercial γ-Al2O3, are discussed. The catalyst was shown to be resistant to the presence of hydrogen sulfide in the steam gas mixture. The methane conversion was close to equilibrium at 2.0 MPa, 800 °C, H2O : CH4 = 2 : 1, feed flow rate 6000 h–1, 30 ppm of H2S. XRD, transmission electron spectroscopy (TEM) and Moessbauer spectroscopy were used to study the structure evolution and phase state of the active components of the system. The formation of paramagnetic iron oxide clusters strongly bound to the support structure and iron-nickel alloy FeNi3 particles on the catalyst surface determined the polyfunctional behavior of the catalyst, which is highly active to the steam reforming of methane and to oxidative decomposition of hydrogen sulfide to elemental sulfur.
About the Authors
G. I. KonstantinovRussian Federation
S. S. Kurdyumov
Russian Federation
Yu. V. Maksimov
Russian Federation
O. V. Bukhtenko
Russian Federation
M. V. Tsodikov
Russian Federation
References
1. Zhang Q.H., Li Y., Xu B.Q. // Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 2004, 49 (1), pp. 138—139.
2. Horn R., Williams K.A., Degenstein N.J., Schmidt L.D. // J. Catal., 2006. 242 (1), pp. 92—102.
3. Ishihara A., Qian E.W., Nuryatin I., Finahari I., Sutrisna P., Kabe T. // Fuel, 2005, 84 (12—13), pp. 1462—1468.
4. Souza Mariana. M.V.M, Neto Octavio R.M., Schmal M. // J. Nat. Gas Chem., 2006, 15 (1), pp. 21—27.
5. Zeppieri M., Villa P.L., Verdone N., Scarsella M., Filippis P.D. // Appl. Catal. A: Gen., 2010, 387(1—2), pp. 147—154.
6. Oliveira E.L.G., Grande C.A., Rodrigues A.E. // The Canadian Journal of Chemical Engineering, 2009, 87, pp. 945—956.
7. Preeti Gangadharan, Krishna C. Kanchi, Helen H. Lou // Chemical еngineering research and design, 2012, 90, pp. 1956—1968.
8. Tsodikov M.V., Kurdyumov S.S., Konstantinov G.I., Murzin V.Yu., Maksimov Yu.V., Korchak V.N. and Suzdalev I.P. // Nanotechnologies in Russia, 2012, Vol. 7, Nos. 9—10, pp. 463—470.
9. Qiujie Shi, Weiqing Chen, Ning Zhang // Journal of Rare Earths, Volume 29, Issue 9, September 2011, pp. 861—865.
10. Pino L., Vita A., Cipiti F., Laganà M., Recupero V. // Applied Catalysis B: Environmental, Vol. 104, Is. 1—2, 27 April 2011, pp. 64—73.
11. Tsodikov M.V., Kurdyumov S.S., Murzin V.Yu., Maksimov Yu.V., Imshennik V.K., Novichikhin S.V., Maksimovskii E.A. and Kriventsov V.V. // Nanotechnologies in Russia, 2012, Vol. 7, Nos. 9—10, pp. 471—481.
12. Пахомов Н.А. Научные основы приготовления катализаторов: введение в теорию и практику. Новосибирск: Изд-во СО РАН, 2011. 262 с.
13. PDF-2 Data Base (Sets 1-47), 1997, JCPDS - International Centre for Diffraction Data.
14. Отчет по государственному контракту № 8411.1003702.16.240 от 2008 г. по теме «Разработка технологии получения нового поколения наноструктурированных катализаторов конверсии природного газа» (шифр «Конверсия»).
15. Грунвальд В.Р. Технология газовой серы. М.: Химия, 1992. 272 с.
16. Нефтепереработка и нефтехимия. Вып. XXXIII, Сборник науч. трудов, 2001. 136 с.
17. Амиров Я.С. // Технико-экономические аспекты промышленной экологии. Ч. 5. 1999. 423 с.
18. Jastrzębska I., Szczerba Ja, Stoch P., Błachowski A., Ruebenbauer K., Prorok R., Śnieżek E. // Crystal structure and Mössbauer study of FeAl2O4, NUKLEONIKA, 2015; 60 (1), pp. 47—49.
Review
For citations:
Konstantinov G.I., Kurdyumov S.S., Maksimov Yu.V., Bukhtenko O.V., Tsodikov M.V. H2S Resistant Bifunctional Catalyst for Steam Reforming of Methane: Activity and Structural Evolution. Kataliz v promyshlennosti. 2017;17(3):201-209. (In Russ.) https://doi.org/10.18412/1816-0387-2017-3-201-209