Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Studies of the Interaction of Palladium Particles with Acid Sites of δ-Al2O3 and δ-Al2O3/Ni-HPCM Composite

https://doi.org/10.18412/1816-0387-2018-1-33-40

Abstract

Variations in the concentrations of oxide sites in the traditional δ-Al2O3 and composite δ-Al2O3/Ni-HPCM (highly porous permeable cellular material) supports before and after supporting the active component were studied in order to identify the reasons for the formation of different states of palladium species in these oxides. It was established that the contents of proton-donor OH groups and aproton Lewis sites were 316 and 575 mmol/g in δ-Al2O3 that was as high as 1.4 and 1.6 times, respectively, of those in δ-Al2O3/Ni- HPCM, while the quantities of Lewis sites with QCO ≥ 35.0 kJ/mol and OH fragments bonded to penta-coordinated aluminium cations in δ-Al2O3 were 1.8 times of those in alumina on Ni- HPCM. After supporting palladium, the loss in number of these sites in δ-Al2O3 was ca. 1.7 times of that in Pd/δ-Al2O3/Ni- HPCM. This fact can argue for a stronger interaction of palladium species with the surface of the traditional δ-Al2O3 and indicate a wider range of charge states of palladium in the Pd/δ-Al2O3 catalyst. The latter leads to a lower selectivity of hydrogenation of acetylene to ethylene in the presence of Pd/δ-Al2O3 compared to that in the presence of Pd/δ-Al2O3/Ni- HPCM.

About the Authors

I. R. Il’yasov
Kazan Federal University
Russian Federation


M. V. Nazarov
Kazan Federal University
Russian Federation


A. A. Lamberov
Kazan Federal University
Russian Federation


References

1. Kang J.H., Shin E.W., Kim W.J., Park J.D., Moon S.H. // Catalysis Today. 2000. V. 63. P. 183—188.

2. Jin Y., Datye A.K., Rightor E., Gulotty R., Waterman W., Smith M., Holbrook M., Maj J., Blackson J. // Journal of Catalysis. 2001. V. 203. P. 292—306.

3. Pradier C.M., Mazina M., Berthier Y., Oudar J. // Journal of Molecular Catalysis. 1994. V. 89. P. 211—220.

4. Gislason J., Xia W., Sellers H. // Journal of Physical Chemistry A. 2002. V. 106. P. 767—774.

5. Praserthdam P., Phatanasri S., Meksikarin J. // Catalysis Today. 2000. V. 63. P. 209—213.

6. Kurukchi S., Wines T.H. // Hydrocarbon Asia (January/ February). 2007. P. 48—56.

7. Ильясов И.Р., Назаров М.В., Ламберов А.А. // Катализ в промышленности. 2014. № 6. С. 50—58.

8. Ющенко В.В. // Журнал физической химии. 1997. Т. 71. № 4. С. 628—632.

9. Кубасов А.А., Китаев Л.Е., Ющенко В.В., Тихий Я.В. // Вестник Московского университета. Серия 2. Химия. 2005. Т. 46. № 4.

10. Паукштис Е.А. Инфракрасная спектроскопия в гетерогенном кислотно-основном катализе. Новосибирск: Наука, 1992.

11. Паукштис Е.А. Оптическая спектроскопия в адсорбции и катализе. Применение ИК-спектроскопии. Новосибирск: Институт катализа СО РАН, 2010.

12. Иванова А.С. Оксиды алюминия: применение, способы получения, структура и кислотно-основные свойства // Промышленный катализ в лекциях. 2008. № 8. С. 7—61.

13. Трегубенко В.Ю., Удрас И.Е., Дроздов В.А., Белый А.С. // Журнал физической химии. 2009. Т. 83. № 12. С. 2238—2243.

14. Molnár A., Sárkány A., Varga M. // Journal of Molecular Catalysis A: Chemical. 2001. V. 173. P. 185—221.


Review

For citations:


Il’yasov I.R., Nazarov M.V., Lamberov A.A. Studies of the Interaction of Palladium Particles with Acid Sites of δ-Al2O3 and δ-Al2O3/Ni-HPCM Composite. Kataliz v promyshlennosti. 2018;18(1):33-40. (In Russ.) https://doi.org/10.18412/1816-0387-2018-1-33-40

Views: 538


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)