

The Studies of the Influence of Magnesium on the Activity of Catalysts for Deep Oxidation in Fluidized Bed during Oxidation of CH4 and CO
https://doi.org/10.18412/1816-0387-2018-1-51-59
Abstract
The activities of commercial and laboratory samples of catalysts for fluidized bed such as СuO/Al2O3, MgO-Cr2O3/Al2O3, CuO-Cr2O3/Al2O3, CuO/Al2O3MgO-Cr2O3 were compared in the model reactions of oxidation of CO and CH4. Aluminium-copper-magnesium-chromium catalysts were established to be most promising for combustion of gaseous fuel and gas mixtures including low-percentage methane mixtures. The catalyst activity to the model reaction of methane oxidation was studied to show that the optimal magnesium content falls into the range of 1–2 wt %. It was discovered that the metals are in the most stable states (Cu2+, Cr3+, Mg2+ and Al3+) on the surface of these catalysts. The compositions, textural and strength properties of the catalysts were characterized using a number of physicochemical methods (BET, XPS, X-ray, and X-ray fluorescence analysis).
About the Authors
Yu. V. DubininRussian Federation
N. A. Tsereshko
Russian Federation
A. A. Saraev
Russian Federation
O. A. Bulavchenko
Russian Federation
V. A. Yakovlev
Russian Federation
References
1. Дубинин Ю.В., Языков Н.А., Симонов А.Д., Яковлев В.А. и др. // Катализ в промышленности. 2013. № 4. C. 68—76.
2. Поповский В.В. // Кинетика и катализ. 1972. № 5. С. 1190—1203.
3. Исмагилов З.Р., Шкрабина Р.А., Корябкина Н.А. // Экология. Серия аналитических обзоров мировой литературы. 1998. № 50. С. 1—80.
4. J. van der Brand, P.C. Snijders, W.G. Sloof, H. Terryn // J.H.W.D. Wit, J. Phys. Chem. B. 108 (2004) 6017-6024.
5. J. Mendialdua, R. Casanova, F. Rueda, A. Rodriguez, J. Quinones, L. Alarcon, E. Escalante, P. Hoffmann, I. Taebi, L. Jalowiecki // J. Mol. Catal. A. 228 (2005) 151-162.
6. N. Kosova, E. Devyatkina, A. Slobodyuk, V. Kaichev // Solid State Ionics. 179 (2008) 1745-1749.
7. A. Rahman, M.H. Mohamed, M. Ahmed, A.M. Aitani // Appl. Catal. A. 121 (1995) 203-216.
8. C.M. Pradier, F. Rodrigues, P. Marcus, M.V. Landau, M.L. Kaliy, A. Gutman, M. Herskowitz // Appl. Catal. B. 27 (2000) 73-85.
9. S. Wang, K. Murata, T. Hayakawa, S. Hamakawa, K. Suzuki // Appl. Catal. A. 196 (2000) 1-8.
10. S.D. Yim, I.-S. Nam // J. Catal. 221 (2004) 601-611.
11. B. Wichterlova, L.Krajvikova, Z. Tvaruzkova, S. Beran // J. Chem. Soc., Faraday Trans. I. 80 (1984) 2639-2645.
12. G.C. Allen, S.J. Harris, J.A. Jutson, J.M. Dyke // Appl. Surf. Sci. 37 (1989) 111-134. 13. N.S. McIntyre, M.G. Cook // Anal. Chem. 1975. Vol. 47. P. 2208-2213.
13. B.R. Strohmeier, D.E. Leyden, R.S. Field, D.M. Hercules // J. Catal. 1985. Vol. 94. P. 514-530.
14. J.C. Otamiri, S.L.T. Andersson, A. Andersson // Appl. Catal. 1990. Vol. 65. P. 159-174.
15. A. Wöllner, F. Lange, H. Schmelz, H. Knözinger // Appl. Catal. A. 1993. Vol. 94. P. 181-203.
16. S. Poulston, P.M. Parlett, P. Stone, M. Bowker // Surf. Interface Anal. 1996. Vol. 24. P. 811-820.
17. J. Batista, A. Pintar, D. Mandrino, M. Jenko, V. Martin // Appl. Catal. A. 2001. Vol. 206. P. 113-124.
18. V.I. Bukhtiyarov, V.V. Kaichev, I.P. Prosvirin // Top. Catal. 2005. Vol. 32. P. 3-15.
19. M. Richter, M.J.G. Fait, R. Eckelt, M. Scneider, J. Radnik, D. Heidemann, R. Fricke // J. Catal. 2007. Vol. 2007. P. 11-24.
20. S. Ardizzone, C.L. Bianchi , M. Fadoni, B. Vercelli // Appl. Surf. Sci. 119 (1997) 253-259.
21. H.-H. Huang, W.-Ch. Shih, Ch.-H. Lai // Appl. Phys. lett. 96 (2010) 193505.
22. Пахаруков И.Ю. Современная техника каталитического эксперимента: Учебно-методическое пособие. Новосибирск: НГУ, 2011.
23. Бобров Н.Н. Экспериментальные методы изучения свойств катализаторов и сорбентов // Промышленный катализ в лекциях. 2006. № 3. С. 41—76.
Review
For citations:
Dubinin Yu.V., Tsereshko N.A., Saraev A.A., Bulavchenko O.A., Yakovlev V.A. The Studies of the Influence of Magnesium on the Activity of Catalysts for Deep Oxidation in Fluidized Bed during Oxidation of CH4 and CO. Kataliz v promyshlennosti. 2018;18(1):51-59. (In Russ.) https://doi.org/10.18412/1816-0387-2018-1-51-59