Preview

Kataliz v promyshlennosti

Advanced search

Template synthesis of 3-D structured macroporous oxides and hierarchical zeolites

Abstract

Since 1997 the method for the synthesis of macroporous supports is developed active using nanoscale templates that are deleted from the final product by burning or dissolution. In this paper the 3-D structured macroporous supports of different chemical nature were obtained by templating technology - aluminum oxide, dioxide of titanium and zirconium, as well as hierarchical silikalit and Fe-silikalit structure of zeolite ZSM-5. Templates consist of densely packed monodisperse polystyrene spheres with diameters ranging from 250 to 1150 nm. It is shown that template synthesis leads to a significant increase in specific pore volume and the surface of the porous oxides. Thus, the pore volume of granular samples of aluminum oxide, obtained in the absence and presence of the polystyrene template are 0,34 and 1,22 cm3/g, respectively. The value of the outer surface area varies from 26,8 m2/g for notemplatу Fe-silicalite with the structure of ZSM-5 zeolite up to 410 m2/g in the same sample obtained in the presence of polystyrene template. Textural evidence suggests a very promising new materials for adsorption and catalytic processes involving high-molecular compounds, such as the catalytic hydrotreatment of heavy oil fractions, conversion of biomass and lignin into chemical products, including liquid hydrocarbons, upon receipt of pharmaceuticals, as well as the adsorption of large molecules, such as heavy metals from aqueous solutions.

About the Authors

E. V. Parkhomchuk
Институт катализа СО РАН, Новосибирск Новосибирский государственный университет
Russian Federation


K. A. Sashkina
Новосибирский государственный университет
Russian Federation


N. A. Rudina
Институт катализа СО РАН, Новосибирск
Russian Federation


N. A. Kulikovskaya
Институт катализа СО РАН, Новосибирск
Russian Federation


V. N. Parmon
Институт катализа СО РАН, Новосибирск Новосибирский государственный университет
Russian Federation


References

1. Sato T. Thermal-Decomposition of Aluminum Hydroxides to Aluminas // Thermochimica Acta. 1985. № 88.

2. P. 69—84.

3. Дзисько В.А., Иванова А.С. Основные методы получения активного оксида алюминия // Известия СО АН СССР. Сер. хим. наук. 1985. № 15. Вып. 5. С. 110—119.

4. Кулько Е.В., Иванова А.С., Литвак Г.С., Крюкова Г.Н., Цыбуля С.В. Получение фазовооднородных оксидов алюминия и изучение их микроструктуры и текстуры // Кинетика и катализ. 2004. Т. 45. № 5. С. 754—762.

5. Tao Y., Abrams L., Kaneko K. Mesopore-Modified Zeolites: Preparation, Characterization, and Applications // Chemical Reviews. 2006. V. 106. № 3. P. 896—910.

6. Verboekend D. Design of hierarchical zeolite catalysts by desilication // Catalysis Science and Technology. 2011. № 1. P. 879—890.

7. Antonietti M., Berton B., Goltner C., Hentze H.P. Synthesis of mesoporous silica with large pores and bimodal pore size distribution by templating of polymer lattices // Advanced Materials. 1998. № 10. P. 154.

8. Imhof A., Pine D.J. Ordered macroporous materials by emulsion templating // Nature. 1997. № 389. P. 948—951.

9. Davis S.A., Burkett S.L., Mendelson N.H., Mann S. Bacterial templating of ordered macrostructures in silica and silica- surfactant mesophases // Nature. № 385. Р. 420—423.

10. Holland B.T., Blanford C.F., Stein A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids // Science. 1998. № 281. Р. 538—540.

11. Geissler M., Xia Y.N. Patterning: Principles and some new developments // Advanced Materials. 2004. № 16. Р. 1249— 1269.

12. Yang P., Deng T., Zhao D., Feng P., Pine D., Chmelka B.F., Whitesides G.M., Stucky G.D. Hierarchically ordered oxides // Science. 1998. № 282. P. 2244—22 6.

13. Deng Y.H., Cai Y., Sun Z.K., Liu J., Liu C., Wei J., Li, W., Liu, C., Wang Y., Zhao D.Y. Multifunctional Mesoporous Composite Microspheres with Well-Designed Nanostructure: A Highly Integrated Catalyst System // Journal of the American Chemical Society. 2010. № 132. Р. 8466—8473.

14. Janssen A.H., Jacobsen C.J.H., Koster A.J., Jong K.P. Exploratory study of mesoporetemplating with carbon during zeolite synthesis // Microporous and Mesoporous Materials. 2003. № 65. P. 59—75.

15. Ya-Ping Guo H.-J., Ya-Jun Guo, Li-Hua Guo, Lian-Feng Chu, Cui-Xiang Guo. Fabrication and characterization

16. of hierarchical ZSM-5 zeolites by using organosilanes as additives // Chemical Engineering Journal. 2011. № 166. P. 391—400.

17. Srivastava R. Mesoporous materials with zeolite framework: remarkable effect of the hierarchical structure for retardation of catalyst deactivation // Chemical Communications. 2006. P. 4489—4491.

18. Holland B.T., Stein A. Dual templating of macroporous silicates with zeolitic microporousframeworks // Journal of the American Chemical Society. 1999. № 121. P. 4308—4309.

19. Zhu G., Gao F., Li D., Li Y., Wang R., Gao B., Li B., Guo Y., Xu R., Liu Z., Terasaki O., Carrero G. V. A., Rodrнguez R., Linares M., Peso G.L. Template-assisted self-assembly of macro—micro bifunctional porous materials // Journal of Materials Chemistry. 2001. № 11. P. 1687—1693.

20. Tosheva L., Sterte J.V.V. Silicalite-1 containing microspheres prepared using shape-directing macro-templates // Microporous and Mesoporous Materials. 2000. № 35—36. P. 621—629.

21. Tao Y. Synthesis of Mesoporous Zeolite A by Resorcinol- Formaldehyde Aerogel Templating // Langmuir. 2005.№ 21. P. 504—507.

22. Zhang B.S.A.D., Mendelsonb N.H., Mann S. Bacterial templating of zeolite fibres with hierarchical structure // Chemical Communications. 2000. PР. 781—782.

23. Dong A.Y.W., Tang Y., Ren N., Zhang Y., Yue Y., Gao Z. Zeolitic tissue through wood cell templanting // Advanced Materials. 2002. № 14. P. 926—929.

24. Zhang B. Starch Gel Templating of Spongelike Macroporous Silicalite Monoliths and Mesoporous Films // Chemistry of Materials. 2002. № 14. P. 1369—1375.

25. Zampieri A., Selvam T., Schwieger W., Rudolph A., Hermann R., Sieber H., Greil P. Biotemplating of Luffacylindrica sponges to self-supporting hierarchical zeolite macrostructures for bio-inspired structured catalytic reactors // Materials Science and Engineering. 2006. № 26. P. 130—135.

26. Valtchev V., Faust A.C., Vidal L. Biomineral-silica-induced zeolitization of equisetum arvense // Angewandte Chemie. Int. Ed. 2003. № 42. P. 2782—2785.

27. Wang L., Shan Z., Liu S., Du Y., Xiao F.S. Bread-template synthesis of hierarchical mesoporous ZSM-5 zeolite with hydrothermally stable mesoporosity // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2009. № 340. P. 126—130.

28. Holm M.S., Taarning E., Egeblad K., Christensen C.H. Catalysis with hierarchical zeolites // Catalysis Today. 2011. № 168. P. 3—16.

29. Qu F., Lin H., Wu X., Li X., Qiu Sh., Zhu G. Bio-templated synthesis of highly ordered macro-mesoporous silica material for sustained drug delivery // Solid State Sciences. 2010. № 12. P. 851—856.

30. Halma M., Castro K.A.D.F., Prйvot V., Forano C.,Wypych F., Nakagaki Sh. Immobilization of anionic iron(III)

31. porphyrins into ordered macroporous layered double hydroxides and investigation of catalytic activity in oxidation reactions // Journal of Molecular Catalysis A: Chemical. 2009. № 310. P. 42—50.

32. Zhang A., Chen Ch., Kuraoka E., Kumagai M. Impregnation synthesis of a novel macroporous silica-based crown ether polymeric material modified by 1-dodecanol and its adsorption for strontium and some coexistent metals //Separation and Purification Technology. 2008. № 62. P. 407—414.

33. Ma T.Y., Zhang X.J., Yuan Zh.Y. Hierarchically meso-/macroporous titanium tetraphosphonate materials: Synthesis, photocatalytic activity and heavy metal ion adsorption // Microporous and Mesoporous Materials. 2009. № 123. P. 234—242.

34. Zou D., Sun L., Aklonis J.J., Salovey R. Model filled polymers. VIII. Synthesis of crosslinked polymeric beads by seed polymerization // Journal of Polymer Science: Part A; Polymer Chemistry. 1992. № 30. P. 1463—1475.

35. Zou D., Ma S., Guan R., Park M., Sun L., Aklonis J.J., Salovey R. Model filled polymers. V. Synthesis of crosslinked monodisperse polymethacrylate beads // Journal of Polymer Science: Part A; Polymer Chemistry. 1992. № 30. P. 137—144.

36. Song Zh., Poehlein G.W. Particle formation in emulsifierfree aqueous-phase polymerization of styrene // Journal of Colloid and Interface Science. 1989. V. 128. № 2. Р. 501— 510.

37. Пархомчук Е.В., Сашкина К.А., Рудина Н.А., Окунев А.Г., Пармон В.Н. Темплатный синтез 3-D структурированных макропористых оксидов // Международный научный журнал Альтернативная энергетика и экология. 2011. Т. 10. № 102. С. 107—111.

38. Parkhomchuk E.V., Vanina M.P., Preis S. The activation of heterogeneous Fenton-type catalyst Fe-MFI // Catalysis Communications. 2008. № 9/3. P. 381—385.

39. Treacy M.M.J., Higgins J.B., Ballmoos R. Collection of simulated XRD powder patterns for zeolites. — Third revised edition, published by The Commission of the International Zeolite Association. 1996.

40. Грег С., Синг К. Адсорбция, удельная поверхность, пористость. — 2-е изд. М.: Мир, 1984. 310 с.

41. Donk S., Janssen A.H., Bitter J.H., Jong K.P. Generation, characterization, and impact of mesopores in zeolite catalysts// Catalysis Reviews. 2003. V. 45. № 2. Р. 297—319.


Review

For citations:


Parkhomchuk E.V., Sashkina K.A., Rudina N.A., Kulikovskaya N.A., Parmon V.N. Template synthesis of 3-D structured macroporous oxides and hierarchical zeolites. Kataliz v promyshlennosti. 2012;(4):23-32. (In Russ.)

Views: 827


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)