

The Catalytic Activity of Amberlyst A-21 to Disproportionation of Trichlorosilane at Critical Temperatures
https://doi.org/10.18412/1816-0387-2018-2-50-56
Abstract
Catalytic properties of anion-exchange resin Amberlyst A-21 in gas-phase disproportionation of trichlorosilane (TCS) at resine critical temperature (up to 423 K) were studied for the first time. The thermodesorprtion followed by pyrolysis were used to establish thermal destruction of Amberlyst A-21 undergoes to form methyl chloride and of the spherical matrix at above 423 K. When Amberlyst A-21 operated at 333–423 K, the apparent activation energy of TCS disproportionation was 37.12 kJ/mol, and the reaction rate constant 0.80 s–1 (at 423 K). Three-month testing of the resin for TCS disproportionation at 423 K demonstrated the stabile catalytic activity.
About the Authors
A. V. VorotyntsevRussian Federation
A. N. Petukhov
Russian Federation
E. N. Razov
Russian Federation
D. A. Makarov
Russian Federation
V. M. Vorotyntsev
Russian Federation
References
1. Ahn S.H., Chun D.M. and Chu W.S. // Int. J. Precis. Eng. Manuf., 2013. vol. 14, no. 6, pp. 873—874.
2. Shah A.V., Meier J. and Vallat-Sauvain E. // Sol. Energ. Mat. Sol. C. 2003. vol. 78, pp. 469—491.
3. Nishi Y. and Doering R. Handbook of Semiconductor Manufacturing Technology, CRC Press, 2007.
4. Eaglesham D. J. and Cerullo M. // Phys. Rev. Lett., 1990. vol. 64, pp. 1943-1947.
5. Chu S. and Majumdar A. // Nature, 2012. vol. 488. no 7411, pp. 294-303.
6. Bathey B.R. and Cretella M.C. // J. Mater. Sc. 2005. vol. 17, no. 11, pp. 3877—3896.
7. O'Mara W.C., Herring R.B. and Hunt L.P. Handbook of Semiconductor Silicon Technology, New Jersey: Noyes Publications, 1990.
8. Green M.A. // Solar Energy, 2004. vol. 76, nos. 1—3, pp. 3—8.
9. Duchemin M.J-P., Bonnet M.M. and Koelsch M.F. // J. Electrochem. Soc. 1978. vol. 125, pp. 637—644.
10. Luque A. and Hegedus S. Handbook of Photovoltaic Science and Engineering, John Wiley & Sons. 2011.
11. US Patent 3963838, 15.06.1976.
12. Iya S.K., Flagella R.N. and Dipaolo F.S. // J. Electrochem. Soc., 1982, vol. 129, pp. 1531—1535.
13. WO Patent 1996/041036, 03.04.1997.
14. Yasuda K. and Okabe T.H. // J. Jpn. Inst. Met., 2010, vol. 74, pp. 1—9.
15. Hou Y.Q., Xie G., Nie Z.F. and Li N. // Adv Mat Res., 2014, vol. 881-883, pp. 1805-1808.
16. Liu S., Xiao W. // Chem. Eng. Sci., 2015, vol. 127. pp. 84—94.
17. Union Carbide Corp. Final Report, DOE/JPL Contract 954334,National Technical Information Center, Springfield, VA, 1981.
18. Пат. РФ 2152902; 20.07.2000.
19. Mehler M. // Electronic News., 1984, vol. 30, no 1485, pp. 54.
20. Iya J.К. // J. Cryst. Growth., 1986, vol. 75, pp. 88—90.
21. Vorotyntsev V.M., Mochalov G.M. and Nipruk O.V. // Russ. J. Appl. Chem., 2001, vol. 74, no. 4, pp. 621—625.
22. US Patent 4704264, 03.11.1987.
23. US Patent 4667048, 19.05.1987.
24. US Patent 4395389, 10.01.2017.
25. Vorotyntsev A.V., Zelentsov S.V., Vorotyntsev V.M. // Russ.Chem. Bull., 2011, vol. 60, no. 8, pp. 1531-1536.
26. Vorotyntsev A.V., Mochalov G.M., Vorotyntsev V.M. // Inorg.Mat., 2013, vol. 48, no. 1, pp.1-5.
27. Vorotyntsev A.V., Petukhov A.N., Vorotyntsev I.V., Sazanova T.S., Trubyanov M.M., Kopersak I.Y., Razov E.N. and Vorotyntsev V.M. // App. Cat. B: Environ., 2016, vol. 198, pp. 334—346.
28. Rossi J.A., Willardson R.K., Weber E.R. and Rode D.L. // SiliconEpitaxy, Academic Press: Semiconductors and semimetals, 2001.
29. Lynch D., Ben W. and Ji X. 140th Annual Meeting and Exhibition, Materials Processing and Energy Materials.: John Wiley. 2011. pp. 685—692.
30. Kornev R.A., Vorotyntsev V.M., Petukhov A.N., Razov E.N., Mochalov L.A., Trubyanov M.M. and Vorotyntsev A.V. // RSC Adv., 2016, vol. 6, no. 102, pp. 99816—99824.
31. Mansfeld D.A, Vodopyanov A.V, Golubev S.V. // Thin Sol. Film., 2014. vol. 562, pp.114—117.
32. Bruno G., Capezzuto P., Cicala G. and Cramarossa F. // Plasm. Chem. Plasm. Proc. 1986, vol. 6, no. 2. pp. 109—125.
33. Platz R. and Wagner S. // Appl. Phys. Lett., 1998, vol. 73, pp. 1236—1238.
34. Mochalov L.A., Kornev R.A., Nezhdanov A.V., Mashin A.I., LobanovA.S., Kostrov A.V., Vorotyntsev V.M. and Vorotyntsev A.V. // Plasm. Chem. Plasm. Proc., 2016, vol. 36, no. 3, pp. 849—856.
35. US Patent 2627451, 21.02.1956.
36. Vorotyntsev A.V., Zelentsov S.V., Vorotyntsev V.M., Petukhov A.N., Kadomtseva A.V. // Russ. Chem. Bull., 2015, vol. 64, no. 4, pp. 759-765.
37. US Patent 2732280, 24.01.1956.
38. US Patent 2834648, 13.05.1958.
39. US Patent 4605543, 12.08.1986.
40. Zagorodni A.A. Ion Exchange Materials: Properties and Applications, Elsevier. 2007.
41. US Patent 3968199, 06.07.1976
42. US Patent 4340574, 20.07.1982.
43. US Patent 4613489, 23.09.1986.
44. US Patent 4548917, 22.10.1985.
45. DE Patent 2162537, 13.07.1972.
46. Huang X., Ding W.-J., Yan J.-M. and Xia W.-D. // Ind. Eng. Chem. Res. 2013, vol. 52, no. 18, pp. 6211—6220.
47. Alcántara-Avila J.R., Sillas-Delgado H.A. andSegovia-HernándezJ.G. // Comput. Chem. Eng., 2015, vol. 78, pp. 85—93.
48. Devyatykh G.G., Panov G.I. and Kharitonov A.S. // Journal. Inorg.Chem. 1987, vol. 32, no. 4, pp. 1002—1005.
49. Vorotyntsev V.M., Balabanov V.V. and Shamrakov D.A. // Highpurity subst. 1987, vol. 3, pp. 74—78.
50. Grishnova N.D., Gusev A.V., Moiseev A.N., Mochalov G.M., Balanovskii N.V. andKharina T.P. // Russ. J. App. Chem. 1999, vol. 72, no. 10, pp. 1761—1766.
51. Vorotyntsev A.V., Petukhov A.N., Makarov D.A., Razov E.N., Vorotyntsev I.V., Nyuchev A.V., Kirillova N.I., Vorotyntsev V.M. // App. Cat. B: Environ., 2018, vol. 224, pp. 621—633.
Review
For citations:
Vorotyntsev A.V., Petukhov A.N., Razov E.N., Makarov D.A., Vorotyntsev V.M. The Catalytic Activity of Amberlyst A-21 to Disproportionation of Trichlorosilane at Critical Temperatures. Kataliz v promyshlennosti. 2018;18(2):50-56. (In Russ.) https://doi.org/10.18412/1816-0387-2018-2-50-56