Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Studies of Steam Cracking of Heavy Oil in the Presence of Iron- and Molybdenum-Containing Disperse Catalysts in a Flow Type Reactor

https://doi.org/10.18412/1816-0387-2018-3-54-63

Abstract

Steam cracking of heavy oil was studied at 425 °C and 2.0 MPa in the presence of disperse catalysts based on iron and molybdenum in a slurry reactor. The catalysts were prepared via in situ decomposition of water soluble precursors of the metal salts. In the steam cracking, the yield of a total of liquid products increased against that in thermal cracking (80 and 77 wt %, respectively). The use of disperse monometal catalysts (iron- and molybdenum-containing), as well as the bimetal catalyst for catalytic steam cracking (CSC) of heavy oil resulted in an increase in the total of liquid products yield up to 85–92 wt %. In addition, CSC provided a higher yield of light fractions (Tboil <350 °C) than steam and thermal cracking processes, as well as a decrease in viscosity and density in comparison to those of the raw feedstock.

About the Authors

R. G. Kukushkin
Boreskov Institute of Catalysis SB RAS, Novosibirsk; Novosibirsk State University
Russian Federation


P. M. Eletskiy
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


O. O. Zaikina
Boreskov Institute of Catalysis SB RAS, Novosibirsk; Novosibirsk State University
Russian Federation


G. A. Sosnin
Boreskov Institute of Catalysis SB RAS, Novosibirsk; Novosibirsk State University
Russian Federation


O. A. Bulavchenko
Boreskov Institute of Catalysis SB RAS, Novosibirsk; Novosibirsk State University
Russian Federation


V. A. Yakovlev
Boreskov Institute of Catalysis SB RAS, Novosibirsk; Novosibirsk State University
Russian Federation


References

1. U.S. Energy Information Administration, International Energy Outlook 2016, vol. 0484: https://www.eia.gov/outlooks/ieo/pdf/0484%282016%29.pdf (Accessed 20 November 2017)

2. Omajali J.B., Hart A., Walker M., Wood J., Macaskie L.E. // Appl. Catal. B Environ. 2017. V. 203. P. 807—819.

3. Muraza O., Galadima A. // Fuel. 2015 V. 157. P. 219—231.

4. Alboudwarej H.,. Felix J, Taylor S., Badry R., Bremner C., Brough B., Skeates C., Baker A., Palmer D., Pattison K., Beshry M., Krawchuk P., Brown G., Calvo R., Triana J. C., Hathcock R., Koerner K., Hughes T., Kundu D., De Cárdenas J. L., West C. // Oilf. Rev. 2006. V. 18, P. 34—53.

5. Alaei M., Bazmi M., Rashidi A., Rahimi A. // J. Pet. Sci. Eng. 2017. V. 158. P. 47—55.

6. Arcelus-Arrillaga P., Pinilla J. L., Hellgardt K., Millan M. // Energy & Fuels. 2017. V. 31. P. 4571—4587.

7. Мироненко О.О., Соснин Г.А., Елецкий П.М., Гуляева Ю.К., Булавченко О.А., Стонкус О.А., Родина В.О., Яковлев В.А. // Наногетерогенный катализ. 2017. V. 2. P. 74—87.

8. Wen S., Zhao Y., Liu Y., Hu S. (doi:10.2118/106180-MS) // Int. Symp. Oilf. Chem. 2007. P. 1—5.

9. Davudov D., Moghanloo R.G. // J. Pet. Sci. Eng. 2017. V. 156. P. 623—632.

10. Li N., Yan B., Xiao X.-M. // Energies. 2015. V. 8. P. 8962—8989.

11. Castañeda L. C., Muñoz J.A.D., Ancheyta J. // Catal. Today. 2014. V. 220—222. P. 248—273.

12. Daud A.R.M., Pinilla J.L., Arcelus-arrillaga P., Hellgardt K., Kandiyoti R., Millan M. // Prepr. Pap.-Am. Chem. Soc., Div. Energy Fuels. 2012. V 57 (2) // https://www.researchgate.net/publication/259222792_Heavy_oil_upgrading_in_subcritical_and_supercritical_water_studies_on_model_compounds (Accessed 20 November 2017).

13. Fathi M. M., Pereira-Almao P. // Energy and Fuels. 2011. V. 25. P. 4867—4877.

14. Nguyen-Huy C., Shin E.W. // Fuel. 2016. V. 169. P. 1—6.

15. Fumoto E., Tago T., and Masuda T. // Energy & Fuels. 2006. V. 20. P. 1—6.

16. Clark P.D., Kirk M.J. // Energy & Fuels. 1994. V. 8. P. 380—387.

17. Duprez D. // Appl. Catal. A Gen. 1992. V. 82 (2). P. 111—157.

18. Kim C. // J. Catal. 1978. V. 52 (1). P. 169—175.

19. Kondoh H., Nakasaka Y., Kitaguchi T., Yoshikawa T., Tago T., Masuda T. // Fuel Process. Technol. 2016. V. 145. P. 96—101.

20. Lee H. S., Nguyen-Huy C., Pham T.-T., Shin E.W. // Fuel. 2016. V. 165. P. 462—467.

21. Kondoh H., Hasegawa N., Yoshikawa T., Nakasaka Y., Tago T., Masuda T. // Energy and Fuels. V. 30 (12). P. 10358—10364.

22. Sahu R., Song B.J., Im J. S., Jeon Y.-P., Lee C.W. // J. Ind. Eng. Chem. 2015. V. 27. P. 12—24.

23. Angeles M.J., Leyva C., Ancheyta J., Ramírez S. // Catal. Today. 2014. V. 220—222. P. 274—294.

24. Martinez-Grimaldo H., Ortiz-Moreno H., Sanchez-Minero F., Ramírez J., Cuevas-Garcia R., Ancheyta-Juarez J. // Catal. Today. 2014. V. 220—222. P. 295—300.

25. Ahn H.K., Park S. H., Sattar S., Woo S.I. // Catal. Today. 2016. V. 265. P. 118—123.


Review

For citations:


Kukushkin R.G., Eletskiy P.M., Zaikina O.O., Sosnin G.A., Bulavchenko O.A., Yakovlev V.A. Studies of Steam Cracking of Heavy Oil in the Presence of Iron- and Molybdenum-Containing Disperse Catalysts in a Flow Type Reactor. Kataliz v promyshlennosti. 2018;18(3):54-63. (In Russ.) https://doi.org/10.18412/1816-0387-2018-3-54-63

Views: 539


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)