

Optimization of One-Stage Processes of Microcrystalline Cellulose Obtaining by Peroxide Delignification of Wood in the Presence of TiO2 Catalyst
https://doi.org/10.18412/1816-0387-2018-3-72-80
Abstract
The traditional method for obtaining microcrystalline cellulose (MCC) from wood raw material is multi-stage and it is based on the integration of environmentally hazardous processes of pulping and bleaching of cellulose and acid hydrolysis of amorphous part of cellulose. The paper describes an improved one-stage catalytic method of microcrystalline cellulose obtaining from softwood and hardwood based on peroxide delignification of wood in acetic acid-water medium under the mild conditions (100 °C, atmospheric pressure) in the presence of an environmentally safe solid catalyst TiO2. Experimental and mathematical optimization of the processes of MCC preparation by peroxide catalytic delignification of various types of wood was carried out. The following optimal modes of obtaining MCC with the yield 36.3–42.0 wt.% of abs. dry wood and residual lignin content ≤1.0 mas.%, hemicellulose ≤6.0 mas.% was established: for aspen – 5 wt.% H2O2, 25 wt.% CH3COOH, hydromodule = 10; for birch – 5 wt.% H2O2, 25 wt.% CH3COOH, hydromodule = 15; for abies – 6 wt.% H2O2, 30 wt.% CH3COOH, hydromodule = 15; for larch – 6 wt.% H2O2, 30 wt.% CH3COOH, hydromodule = 15.
About the Authors
B. N. KuznetsovRussian Federation
I. G. Sudakova
Russian Federation
O. V. Yatsenkova
Russian Federation
N. V. Garyntseva
Russian Federation
F. Rataboul
France
L. Djakovitch
France
References
1. Thoorens G., Krier F., Leclercq B., Carlin B., Evrard B. // International Journal of Pharmaceutics. 473 (2014) P. 64.
2. Ghanbarzadeh B., Oleyaei S.A., Almasi H. // Crit. Rev. Food Sci. Nutr. 55 (12) (2015) P. 1699.
3. Siro I., Plackett D. // Cellulose 17 (2010) P. 459.
4. Das K., Ray D., Bandyopadhyay N.R., Ghosh T., Mohanty A., Misra V. // Cellulose 16 (2009) P. 783.
5. Laka M., Chernyavskaya S. // BioResources. 2(3) (2007) P. 583.
6. Bochek A., Shevchuk I., Lavrent’ev V. // Russ J. Appl. Chem. 76(10) (2003) P. 1679.
7. Jahan, M. S., Saeed, A., He, Z., Ni, Y. // Cellulose 18 (2011) P. 451.
8. Johar, N., Ahmad, I., Dufresne, A. // Industrial Crops and Products 37 (2012) P. 93.
9. Chen Guo-Yin, Yu Hou-Yong, Zhang Cai-Hong, Zhou Ying, Yao Ju-Ming // Journal of Nanoparticle Research 18 (2016) P. 48.
10. Okwonna O.O. // Carbohydr. Polym. 89(1) (2013) P. 721.
11. Thoorens G., Krier F., Rozet E., Carlin B., Evrard B. // Int. J. Pharm 490 (1) (2015) P. 47.
12. Patent 5,366,742. USA. Published 1994.
13. Ohwoavworhua F.O., Adelakun T.A. // Indian Journal of Pharmaceutical Sciences 72(3) (2010) P. 295.
14. Balaxi M., Nikolakakis I., Kachrimanis K., Malamataris S. // J. Pharm. Sci. 98(2) (2009) P. 676.
15. Trache D., Hussin M.H., Chuin C.T., Sabar S., Fazita M.R. // International Journal of Biological Macromolecules 93 (2016 ) P. 789.
16. Ummartyotin S., Manuspiya H. // Renew. Sustain. Energy Rev. 41 (2015 ) P. 402.
17. John C.F. Walker Primary Wood Processing: Principles and Practice (book) (2006) Springer, printed in the Nitherland — 595 p.
18. Bajpai P. Enviranmaetally being approaches for pulp bleaching (book). (2005) — 277 P.
19. Popova N.R., Tortseva T.V., Bogolitsyn K.G. // Russian Journal of Applied Chemistry 86 (8) (2013) P. 1275.
20. Abad S., Santos V., Paraj’o J.C. // Cellul. Chem. Technol. 35 (2003) P. 333.
21. Ligero P., Villaverde J.J., de Vega A., Bao M. // Industrial Crops and Products 27 (2008) P.110.
22. Suchy M., Argyropoulos D.S. // TAPPI Journal 785(4) (2001) P. 2.
23. Hakansson H., Ahlgren P. // Cellulose 12(2) (2005) P. 177.
24. Pavasars, J. Hagberg, H. Borén, B. Allard. Alkaline // Journal of Polymers and the Environment 11(2) (2003) P. 39.
25. Leppänen K., Andersson S., Torkelli M., Knaapila M., Kotelnikova N., Serimaa R. // Cellulose 16(6) (2009) P.999.
26. Ioelovich M., Leykin A. // Cellulose Chemistry ana Technology 40(5) (2006) P. 313.
27. US Patent 6,392,034 В1. Published.2002.
28. US Patent 7,005,514.В2, Published 2006.
29. Kuznetsov B.N., Kuznetsova S.A., Danilov V.G., Yatsenkova O.V., Petrov AV. // Reac Kinet Mech Cat. 104 (2011) P. 337.
30. Sjoöstroöm E., Alern R. Analytical Methods in Wood Chemistry. Pulping and Papermaking. Springer-Verlag, Berlin (1999).
31. Park S., Baker J.O., Himmel M.E. Parilla P.A., Jonson D.K. // Biotechnology for Biofuels. (2010) P. 3.
32. Thakur V.K., Thakur M.K. Handbook of Sustainable Polymers: Structure and Chemistry. Taylor & Francis Group. LLC (2016) 923 p.
33. Kuznetsov B.N., Sudakova I.G., Garyntseva N.V., Djakovitch L., Pinel C. // Reac. Kinet. Mech. Cat. 110 (2013) P.271.
34. Пен Р.З. Планирование эксперимента в Statgrachics. Красноярск: СибГТУ (2003) 246 с. / Pen R.Z. Experimental Design in Statgraphics Centurion. Krasnoyarsk (2014) 293 p.
35. Shankar S., Rhim J.W. // Carbohydr. Polym 135 (2016) P. 18.
36. Yuvraj P, Chauhan RS, Sapkal VS, Zamre GS // Int. J. Chem. Sci. 7(6) (2009) P. 81.
Review
For citations:
Kuznetsov B.N., Sudakova I.G., Yatsenkova O.V., Garyntseva N.V., Rataboul F., Djakovitch L. Optimization of One-Stage Processes of Microcrystalline Cellulose Obtaining by Peroxide Delignification of Wood in the Presence of TiO2 Catalyst. Kataliz v promyshlennosti. 2018;18(3):72-80. (In Russ.) https://doi.org/10.18412/1816-0387-2018-3-72-80