

Hydrogenation of CO2 over 15% Fe/SiO2 Catalyst under Sub- and Supercritical Conditions
https://doi.org/10.18412/1816-0387-2018-4-57-63
Abstract
The results of comparative studies of CO2 hydrogenation over 15% Fe/SiO2 catalyst under sub- and supercritical conditions are presented for the first time. The reaction was studied at 300–500 °C and atmospheric pressure in gas phase and at 95 atm under supercritical conditions. The molar H2 : CO2 ratio was 2 : 1. Under supercritical conditions, the selectivity to CO2 decreased from 90–95 to 30–50 % at all temperatures, while the selectivity to hydrocarbons increased up to 60 %. The reaction under supercritical conditions, unlike gas-phase hydrogenation, produced alcohols. TG-DTG-DTA techniques were used to demonstrate 2.2-fold decrease in the quantity of carbon-like deposits in comparison to that in the gas-phase reaction. XRD studies revealed the formation of graphite-like species on the catalyst surface under gas-phase but not supercritical conditions. The developed process and catalyst for hydrogenation of CO2 can be recommended to be further modified in order to improve the catalyst based on iron nanoparticles that is as expensive as 0.1–0.01 of the known catalysts for CO2 hydrogenation.
About the Authors
N. D. EvdokimenkoRussian Federation
K. O. Kim
Russian Federation
G. I. Kapustin
Russian Federation
N. A. Davshan
Russian Federation
A. L. Kustov
Russian Federation
References
1. Leitner W. // Acc. Chem. Res. 2002. v. 35 (9). p. 746-756.
2. Kruse A., Vogel H. // Chem. Eng. Technol. 2008. v. 31. №. 1. p. 23-32.
3. Utsis N., Vidruk-Nehemya R., Landau M.V., Herskowitz M. // Faraday Discussions. 2016. v. 188. p. 545-563.
4. Ponte M.N. // J. of Supercritical Fluids. 2009. v. 47. v. 344-350.
5. Liu R., Zhang P., Zhang S., Yan T. Xin J., Zhang X. // Reviews in Chem. Eng. 2016. v. 32. №. 6. p. 587-609.
6. Ракитин М.Ю., Долуда В.Ю. и др. // Катализ в промышленности. 201. № 6. С. 24—27.
7. Ramsey E., Sun Q., Zhang Z., Zhang C., Gou W. // J. of Environmental Sciences. 2009. v. 21. № 6. p. 720-726.
8. Wang W., Wang S., Ma X., Gong J. // Chem. Soc. Rev. 2011. v. 40. p. 3703-3727.
9. Gao P., Li S., Bu X., Dang S., Liu Z., Wang H., Zhong L., Qiu M., Yang C, Cai J., Wei W., Sun Y. // Nature Chem. 2017. v. 9. p. 1019-1024.
10. Wang X., Shi H., Szangi J. // Nature Comm. 2017. v. 8. № 1. p. 513-519
11. Saeidi S., Najari S., Fazlollahi F., Nikoo M.K., Sefidkon F., Klemes J.J., Baxter L.L. // Renewable and Sustainable Energy Reviews. 2017. v. 80. p. 1292-1311.
12. Owen R.E., Mattia D., Plucinski P., Jones. M.D. // Chem. Phys. Chem. 2017. v. 18. № 22. p. 3211-3218.
13. Cubeiro M.L., Morales H., Goldwasser M.R., Pérez-Zurita M.J., González-Jiméneza F., Urbina de N C. // App. Catal. A: General. 1999. v. 189. № 1. p. 87-97.
14. Голосман Е.З., Ефремов В.Н. // Катализ в промышленности. 2012. № 5. С. 36—55.
15. Kruse A., Vogel. H. // Chem. Eng. Technol. 2008. v. 31. № 1. p. 23-32.
16. R. Hughes. Deactivation of Catalysts // Academic Press. London. 1984. P. 523.
17. Bogdan V.I., Klimenko T.A., Kustov L.M., Kazansky. V.B. // App. Catal. A: General. 2004. v. 267. p. 175-179.
18. Кустов Л.М. // Ж. физ. хим. 2015. Т. 89. С. 2006.
19. Шестеркина А.А., Шувалова Е.В., Кириченко О.А., Стрелкова А.А., Ниссенбаум В.Д., Капустин Г.И., Кустов Л.М. // Ж. физ. хим. 2017. Т. 91. № 2. С. 201—204.
20. Kustov L.M., Tarasov A.L. // Mendeleev Commun. 2014. V. 24. № 6. P. 349-350.
21. Shesterkina A.A., Kirichenko O.A., Kozlova L.M., Kapustin G.I., Mishin I.V., Strelkova A.A., Kustov L.M. // Mendeleev Commun. 2016. V. 26. № 3. P. 228-230.
22. Tada S., Thiel I., Lo H.K., Copéret C. // Chimia. 2015. v. 69. № 12. p. 759-764(6).
23. Hu B., Guild C., Suib. S.L. // Journal of CO2 Utilization. 2013. v. 1. p. 18-27.
24. Lee J.F., Chern W.S., Lee. M.D., Dong T.Y. // Can. J. Chem. Eng. 1992. v. 70. p. 511-515.
25. Evdokimenko N.D., Kustov A.L., Kim K.O., Igonina M.S., Kustov L.M. // Mendeleev Commun. 2018. v. 28. № 2. p. 147-149.
26. Peng D.Y., Robinson D.B. // Ind. Eng. Chem. Fundamen. 1976. v. 15. №1. p. 59-64
27. Bezanehtak K., Combes G.B., Dehghani F., Foster N.R. // J. Chem. Eng. Data. 2002. v. 47(2), 161-168.
28. Spano J.O., Heck C.K., Barrick P.L. // J. of Chem. and Eng. Data, 1968, v. 13(2). p. 168-171.
29. Tsang C.Y., Streett W.B. // Chem. Eng. Science. 1981. v. 36. № 6. p. 993-1000.
30. Zhang H., Han B., Hou Z., Liu Z. // Fluid Phase Equilibria. 2001. v. 179. № 1—2. p. 131-138.
31. M. Hartl, R. C.Gillis, L. Daemen et al. // Phys. Chem. Chem. Phys., 2016. v. 18. p. 17281-17293.
Review
For citations:
Evdokimenko N.D., Kim K.O., Kapustin G.I., Davshan N.A., Kustov A.L. Hydrogenation of CO2 over 15% Fe/SiO2 Catalyst under Sub- and Supercritical Conditions. Kataliz v promyshlennosti. 2018;18(4):57-63. (In Russ.) https://doi.org/10.18412/1816-0387-2018-4-57-63