

Catalytic Synthesis of Triethanolamine in a Microchannel Reactor
https://doi.org/10.18412/1816-0387-2018-5-37-44
Abstract
The process of ammonia oxyethylation was studied in a microchannel reactor at wide ranges of temperature (70–180 °C) and contact time (0.47–3.3 min). Monoethanolamine (MEA), diethanolamine (DEA), and the target triethanolamine (TEA) were the main products of the reaction between ethylene oxide (EO) and ammonia. The EO conversion was shown to increase with lengthening contact time (τ), it being 90 % at τ = 3.3 min. The highest selectivity to MEA and DEA was observed at 70 °C and τ = 3.3 min. A high selectivity to TEA (84 %) was reached at short τ (0.47 min) and maximal temperature (180 °C). The yield of TEA increased as temperature was elevated and contact time lengthened to reach 62 % at τ = 3.3 min and 155–180 °C. Mathematical modeling of the process allowed kinetic constants of individual stages to be calculated. The difference between the calculated and literature kinetic parameters could be accounted for by the specific features of the microchannel reactor providing, unlike traditional reactors for synthesis of triethanolamine, high heat and mass transfer.
About the Authors
D. V. AndreevRussian Federation
E. E. Sergeev
Russian Federation
L. L. Makarshin
Russian Federation
E. A. Ivanov
Russian Federation
A. G. Gribovskiy
Russian Federation
N. Yu. Adonin
Russian Federation
Z. P. Pai
Russian Federation
V. N. Parmon
Russian Federation
References
1. Young Jay A. // J. Chem. Educ. 2004. Vol. 81. № 1. P. 24.
2. Tsuneki H., Moriya A. // Chem. Eng. J. 2009. Vol. 149. № 1/3. P. 363-369.
3. Zahedi G., Amraei S., Biglari M. // Korean J. Chem. Eng. 2009. Vol. 26. № 6. P. 1504-1511.
4. Tsuneki H., Kirishiki M., Oku T. // Bull. Chem. Soc. Jap. 2007. Vol. 80. № 6. P. 1075-1090.
5. Tsuneki H. // Catal. Surv. Asia. 2010. Vol. 14. № 3/4. P. 116-123.
6. Ruming F., Deju W., Zhongneng L., Zaiku X. // Catal. Commun. 2010. Vol. 11. № 15. P. 1220-1223.
7. Andreev D.V., Makarshin L.L., Gribovskii A.G. et al. // Chem. Eng. J. 2015. V. 259. P. 252-256.
8. Lin Fu-Lan, Xiong Dong-Sheng // Chin. J. Spectrosc. Lab. 2003. Vol. 20. № 6. P. 884-887.
9. Baerns M., Hofmann H., Renken A. Chemische Reaktionstechnik, in: M. Baerns, F. Fetting, H. Hofmann, W. Keim, U. Onken (Eds.), Lehrbuch der Technischen Chemie, vol. Bd. 1, third ed., Georg Thieme Verlag, Stuttgart, New York, 1999, 444 pp.
10. Horny C., Kiwi-Minsker L., Renken A. // Chem. Eng. J. 2004. Vol. 101 P. 3-9.
11. Karim A., Bravo J., Datye A. // Applied Catalysis A: General. 2005. Vol. 282, № 1-2. P. 101-109.
12. Bellos G.D., Papayannakos N.G. // Catal. Today. 2003. Vol. 79—80. P. 349-355.
13. Andreev D.V., Sergeev E.E., Gribovskii A.G., Makarshin L.L., Prikhod'ko S.A., Adonin N.Yu., Pai Z.P., Parmon V.N. // Chem. Eng. J. 2017. Vol. 330. P. 899-905.
14. Ермакова А. Макрокинетические модели сложных реакций. Промышленный катализ в лекциях / Под ред. А.С. Носкова. М.: Калвис, 2006. № 4. С. 67—114.
15. Hatta M., Ito T., Miki M. and Okabe T. // Yukagaku (Journal of Japan oil Chemists’ Society), 1966, Vol. 15, P. 215-220.
16. Longuet C., Coq B., Durand R. et al. // J. Molecul. Catal. A: Chem. 2005. Vol. 234. № 1/2. P. 59-62.
17. Zahedi H., Amraei S., Biglari M. // Korean J. Chem. Eng. 2009. Vol. 26. № 6. P. 1504-1511.
18. McMillan T. // SRI International. 1991. Vol. 193(6), P. 1-46.
Review
For citations:
Andreev D.V., Sergeev E.E., Makarshin L.L., Ivanov E.A., Gribovskiy A.G., Adonin N.Yu., Pai Z.P., Parmon V.N. Catalytic Synthesis of Triethanolamine in a Microchannel Reactor. Kataliz v promyshlennosti. 2018;18(5):37-44. (In Russ.) https://doi.org/10.18412/1816-0387-2018-5-37-44