

Studies of the Influence of Promoting the Ni/Al2O3 Catalyst with Copper on the Activity to Hydrotreatment of Esters
https://doi.org/10.18412/1816-0387-2019-1-40-49
Abstract
The influence of the composition of the active component of copper-doped nickel catalysts on the activity and selectivity to hydrodeoxygenation (HDO) of model vegetable oils (esters) to eliminate oxygen and produce alkanes was studied. The Ni/Al2O3 andNi-Cu/Al2O3 catalysts were shown to be active to this process. They catalyzed HDO of a mixture of methyl ester of hexadecane acid and ethyl ester of decane acid to produce C6–C16 alkanes and oxygen-containing compounds, methane and ethane being detected in the gas phase. A decrease in the Ni/Cu ratio in the catalyst led to a decrease in the ester conversion and in the catalyst activity to hydrogenolysis of C–C bonds. Hence, the introduction of copper may favor preservation of the carbon skeleton of HDO-produced alkanes and a decrease in the methane yield. XRD studies revealed the formation of solid solutions Ni1–xCux upon addition of copper to the Ni/Al2O3 catalyst. From XPS data, an increase in the copper proportion in the Ni-Cu/Al2O3 catalyst resulted in a decrease in the Ni/Cu ration on the catalyst surface.
About the Authors
R. G. KukushkinRussian Federation
P. M. Eletskiy
Russian Federation
O. A. Bulavchenko
Russian Federation
A. A. Saraev
Russian Federation
V. A. Yakovlev
Russian Federation
References
1. Organization of the Petroleum Exporting Countries. 2017 OPEC World Oil Out- look. October 2017. Available from: http://www.opec.org http://doi.org/10.1190/1.1439163
2. Mwangi J.K., Lee W. J., Chang Y.C., Chen C.Y., & Wang L.C. // Applied Energy. 2018. Vol. 159. Р. 214-236. http://doi.org/10.1016/j.apenergy.2015.08.084
3. Mofijur M., Rasul M.G., Hyde J., Azad A.K., Mamat R., & Bhuiya M.M.K. // Renewable and Sustainable Energy Reviews. 2016. Vol. 53. Р. 265-278. http://doi.org/10.1016/j.rser.2015.08.046
4. Luque R., Herrero-Davila L., Campelo J.M., Clark J.H., Hidalgo J.M., Luna D., Marinas J.M., Romero A.A. // Energy & Environmental Science. 2008. Vol. 1. P. 542-564.
5. Jiménez Espadafor F., Torres García M., Becerra Villanueva J., Moreno Gutiérrez J. // Transportation Research Part D: Transport and Environment. 2009. Vol. 14. P. 461-469.
6. Ma F., Hanna M.A. // Bioresource Technology. 1999. Vol. 70. P. 1-15.
7. Furimsky E. // Appl. Catal. A: General. 2000. Vol. 199. P. 147-190.
8. Choudhary T.V., Phillips C.B. // Appl. Catal. A: General. 2011. Vol. 397. P. 1-12.
9. Dahlquist E. Technologies for Converting Biomass to Useful Energy: Combustion, Gasification, Pyrolysis, Torrefaction and Fermentation. Cleveland: CRC Press, 2013. P. 520.
10. Liu Q., Zuo H., Wang T., Ma L., Zhang Q. // Appl. Catal. A: General. 2013. Vol. 468. P. 68-74.
11. Toba M., Abe Y., Kuramochi H., Osako M., Mochizuki T., Yoshimura Y. // Catal. Today. 2011. Vol. 164. P. 533-537.
12. Şenol O.İ., Viljava T.R., Krause A.O.I. // Catal. Today. 2005. Vol. 106. P. 186-189.
13. Şenol O.İ., Viljava T.R., Krause A.O.I. // Catal. Today. 2005. Vol. 100. P. 331-335.
14. Şenol O.İ., Viljava T.R., Krause A.O.I. // Appl. Catal. A: General. 2007. Vol. 326. P. 236-244.
15. Bridgwater A.V. // Catal. Today. 1996. Vol. 29. P. 285-295.
16. Wang W., Zhang K., Liu H., Qiao Z., Yang Y., Ren K. // Catal. Commun. 2013. Vol. 41. P. 41-46.
17. Yakovlev V.A., Khromova S.A., Sherstyuk O.V., Dundich V.O., Ermakov D.Y., Novopashina V.M., Lebedev M.Y., Bulavchenko O., Parmon V.N. // Catal. Today. 2009. Vol. 144. P. 362-366.
18. Lee J.-H., Lee E.-G., Joo O.-S., Jung K.-D. // Appl. Catal. A: General. 2004. Vol. 269. P. 1-6.
19. Reshetenko T.V., Avdeeva L.B., Ismagilov Z.R., Chuvilin A.L., Ushakov V.A. // Appl. Catal. A: General. 2003. Vol. 247. P. 51-63.
20. Mile B., Stirling D., Zammit M.A., Lovell A., Webb M. // J. Catal. 1988. Vol. 114. P. 217-229.
21. Larsson P.-O., Andersson A. // Appl. Catal. B: Environmental. 2000. Vol. 24. P. 175-192.
22. Hoang D.L., Dang T.T.H., Engeldinger J., Schneider M., Radnik J., Richter M., Martin A. // Journal of Solid State Chemistry. 2011. Vol. 184. P. 1915-1923.
23. Batista J., Pintar A., Mandrino D., Jenko M., Martin V. // Appl. Catal. A: General. 2001. Vol. 206. P. 113-124.
24. Robertson S.D., McNicol B.D., De Baas J.H., Kloet S.C., Jenkins J.W. // J. Catal. 1975. Vol. 37. P. 424-431.
25. Pérez-Hernández R., Mondragón Galicia G., Mendoza Anaya D., Palacios J., Angeles-Chavez C., Arenas-Alatorre J. // Int. J. Hydrogen Energy. 2008. Vol. 33. P. 4569-4576.
26. Vizcaíno A.J., Carrero A., Calles J.A. // Int. J. Hydrogen Energy. 2007. Vol. 32. P. 1450-1461.
27. Mansouri A., Khodadadi A.A., Mortazavi Y. // J. Hazard. Mater. 2014. Vol. 271. P. 120-130.
28. Kosova N.V., Devyatkina E.T., Kaichev V.V. // J. Power Sources. 2007. Vol. 174. P. 735-740.
29. Li C.P., Proctor A., Hercules D.M. // Appl. Spectrosc. 1984. Vol. 38. P. 880-886.
30. Batista J., Pintar A., Mandrino D., Jenko M., Martin V. // Appl. Catal. A. 2001. Vol. 206. P. 113-124.
31. Bukhtiyarov V.I., Kaichev V.V., Prosvirin I.P. // Top. Catal. 2005. Vol. 32. P. 3-15.
32. McIntyre N.S., Cook M.G. // Anal. Chem. 1975. Vol. 47. P. 2208-2213.
33. Otamiri J.C., Andersson S.L.T., Andersson A. // Appl. Catal. 1990. Vol. 65. P. 159-174.
34. Poulston S., Parlett P.M., Stone P., Bowker M. // Surf. Interface Anal. 1996. Vol. 24. P. 811-820.
35. Richter M., Fait M.J.G., Eckelt R., Scneider M., Radnik J., Heidemann D., Fricke R. // J. Catal. 2007. Vol. 2007. P. 11-24.
36. Strohmeier B.R., Leyden D.E., Field R.S., Hercules D.M. // J. Catal. 1985. Vol. 94. P. 514-530.
37. Wöllner A., Lange F., Schmelz H., Knözinger H. // Appl. Catal. A. 1993. Vol. 94. P. 181-203.
38. Moretti G. // J. Electron Spectrosc. Relat. Phenom. 1995. Vol. 76. P. 365-370.
39. Сеттерфилд Ч. Практический курс гетергонного катали- за: Пер. с англ. // М.: Мир, 1984. 520 c.
40. Ardiyanti A.R., Khromova S.A., Venderbosch R.H., Yakovlev V.A., Heeres H.J. // Appl. Catal. B: Environmental. 2012. Vol. 117-118. P. 105-117.
41. Kukushkin R.G., Bulavchenko O.A., Kaichev V.V., Yakovlev V.A. //Appl. Catal. B: Environmental. 2015. Vol. 163. P. 531-538.
42. Sinfelt J.H., Carter J.L., Yates D.J.C. // J. Catal. 1972. Vol. 24.P. 283-296.
43. Lin Y.-C., Ho J.-J. // J. Phys. Chem. C. 2011. Vol. 115. P. 19231-19238.
44. Li, X., Luo, X., Jin, Y., Li, J., Zhang, H., Zhang, A., & Xie, J. (2018). Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectivelyupgrading the renewable bio-oils to second generation biofuels. Renewable and Sustainable Energy Reviews, 82(September 2016), 3762—3797. http://doi.org/10.1016/j.rser.2017.10.091
Review
For citations:
Kukushkin R.G., Eletskiy P.M., Bulavchenko O.A., Saraev A.A., Yakovlev V.A. Studies of the Influence of Promoting the Ni/Al2O3 Catalyst with Copper on the Activity to Hydrotreatment of Esters. Kataliz v promyshlennosti. 2019;19(1):40-49. (In Russ.) https://doi.org/10.18412/1816-0387-2019-1-40-49