Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Studies of the Influence of Promoting the Ni/Al2O3 Catalyst with Copper on the Activity to Hydrotreatment of Esters

https://doi.org/10.18412/1816-0387-2019-1-40-49

Abstract

The influence of the composition of the active component of copper-doped nickel catalysts on the activity and selectivity to hydrodeoxygenation (HDO) of model vegetable oils (esters) to eliminate oxygen and produce alkanes was studied. The Ni/Al2O3 andNi-Cu/Al2O3 catalysts were shown to be active to this process. They catalyzed HDO of a mixture of methyl ester of hexadecane acid and ethyl ester of decane acid to produce C6–C16 alkanes and oxygen-containing compounds, methane and ethane being detected in the gas phase. A decrease in the Ni/Cu ratio in the catalyst led to a decrease in the ester conversion and in the catalyst activity to hydrogenolysis of C–C bonds. Hence, the introduction of copper may favor preservation of the carbon skeleton of HDO-produced alkanes and a decrease in the methane yield. XRD studies revealed the formation of solid solutions Ni1–xCux upon addition of copper to the Ni/Al2O3 catalyst. From XPS data, an increase in the copper proportion in the Ni-Cu/Al2O3 catalyst resulted in a decrease in the Ni/Cu ration on the catalyst surface.

About the Authors

R. G. Kukushkin
Boreskov Institute of Catalysis, Novosibirsk; Novosibirsk State University
Russian Federation


P. M. Eletskiy
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


O. A. Bulavchenko
Boreskov Institute of Catalysis, Novosibirsk; Novosibirsk State University
Russian Federation


A. A. Saraev
Boreskov Institute of Catalysis, Novosibirsk; Novosibirsk State University
Russian Federation


V. A. Yakovlev
Boreskov Institute of Catalysis, Novosibirsk; Novosibirsk State University
Russian Federation


References

1. Organization of the Petroleum Exporting Countries. 2017 OPEC World Oil Out- look. October 2017. Available from: http://www.opec.org http://doi.org/10.1190/1.1439163

2. Mwangi J.K., Lee W. J., Chang Y.C., Chen C.Y., & Wang L.C. // Applied Energy. 2018. Vol. 159. Р. 214-236. http://doi.org/10.1016/j.apenergy.2015.08.084

3. Mofijur M., Rasul M.G., Hyde J., Azad A.K., Mamat R., & Bhuiya M.M.K. // Renewable and Sustainable Energy Reviews. 2016. Vol. 53. Р. 265-278. http://doi.org/10.1016/j.rser.2015.08.046

4. Luque R., Herrero-Davila L., Campelo J.M., Clark J.H., Hidalgo J.M., Luna D., Marinas J.M., Romero A.A. // Energy & Environmental Science. 2008. Vol. 1. P. 542-564.

5. Jiménez Espadafor F., Torres García M., Becerra Villanueva J., Moreno Gutiérrez J. // Transportation Research Part D: Transport and Environment. 2009. Vol. 14. P. 461-469.

6. Ma F., Hanna M.A. // Bioresource Technology. 1999. Vol. 70. P. 1-15.

7. Furimsky E. // Appl. Catal. A: General. 2000. Vol. 199. P. 147-190.

8. Choudhary T.V., Phillips C.B. // Appl. Catal. A: General. 2011. Vol. 397. P. 1-12.

9. Dahlquist E. Technologies for Converting Biomass to Useful Energy: Combustion, Gasification, Pyrolysis, Torrefaction and Fermentation. Cleveland: CRC Press, 2013. P. 520.

10. Liu Q., Zuo H., Wang T., Ma L., Zhang Q. // Appl. Catal. A: General. 2013. Vol. 468. P. 68-74.

11. Toba M., Abe Y., Kuramochi H., Osako M., Mochizuki T., Yoshimura Y. // Catal. Today. 2011. Vol. 164. P. 533-537.

12. Şenol O.İ., Viljava T.R., Krause A.O.I. // Catal. Today. 2005. Vol. 106. P. 186-189.

13. Şenol O.İ., Viljava T.R., Krause A.O.I. // Catal. Today. 2005. Vol. 100. P. 331-335.

14. Şenol O.İ., Viljava T.R., Krause A.O.I. // Appl. Catal. A: General. 2007. Vol. 326. P. 236-244.

15. Bridgwater A.V. // Catal. Today. 1996. Vol. 29. P. 285-295.

16. Wang W., Zhang K., Liu H., Qiao Z., Yang Y., Ren K. // Catal. Commun. 2013. Vol. 41. P. 41-46.

17. Yakovlev V.A., Khromova S.A., Sherstyuk O.V., Dundich V.O., Ermakov D.Y., Novopashina V.M., Lebedev M.Y., Bulavchenko O., Parmon V.N. // Catal. Today. 2009. Vol. 144. P. 362-366.

18. Lee J.-H., Lee E.-G., Joo O.-S., Jung K.-D. // Appl. Catal. A: General. 2004. Vol. 269. P. 1-6.

19. Reshetenko T.V., Avdeeva L.B., Ismagilov Z.R., Chuvilin A.L., Ushakov V.A. // Appl. Catal. A: General. 2003. Vol. 247. P. 51-63.

20. Mile B., Stirling D., Zammit M.A., Lovell A., Webb M. // J. Catal. 1988. Vol. 114. P. 217-229.

21. Larsson P.-O., Andersson A. // Appl. Catal. B: Environmental. 2000. Vol. 24. P. 175-192.

22. Hoang D.L., Dang T.T.H., Engeldinger J., Schneider M., Radnik J., Richter M., Martin A. // Journal of Solid State Chemistry. 2011. Vol. 184. P. 1915-1923.

23. Batista J., Pintar A., Mandrino D., Jenko M., Martin V. // Appl. Catal. A: General. 2001. Vol. 206. P. 113-124.

24. Robertson S.D., McNicol B.D., De Baas J.H., Kloet S.C., Jenkins J.W. // J. Catal. 1975. Vol. 37. P. 424-431.

25. Pérez-Hernández R., Mondragón Galicia G., Mendoza Anaya D., Palacios J., Angeles-Chavez C., Arenas-Alatorre J. // Int. J. Hydrogen Energy. 2008. Vol. 33. P. 4569-4576.

26. Vizcaíno A.J., Carrero A., Calles J.A. // Int. J. Hydrogen Energy. 2007. Vol. 32. P. 1450-1461.

27. Mansouri A., Khodadadi A.A., Mortazavi Y. // J. Hazard. Mater. 2014. Vol. 271. P. 120-130.

28. Kosova N.V., Devyatkina E.T., Kaichev V.V. // J. Power Sources. 2007. Vol. 174. P. 735-740.

29. Li C.P., Proctor A., Hercules D.M. // Appl. Spectrosc. 1984. Vol. 38. P. 880-886.

30. Batista J., Pintar A., Mandrino D., Jenko M., Martin V. // Appl. Catal. A. 2001. Vol. 206. P. 113-124.

31. Bukhtiyarov V.I., Kaichev V.V., Prosvirin I.P. // Top. Catal. 2005. Vol. 32. P. 3-15.

32. McIntyre N.S., Cook M.G. // Anal. Chem. 1975. Vol. 47. P. 2208-2213.

33. Otamiri J.C., Andersson S.L.T., Andersson A. // Appl. Catal. 1990. Vol. 65. P. 159-174.

34. Poulston S., Parlett P.M., Stone P., Bowker M. // Surf. Interface Anal. 1996. Vol. 24. P. 811-820.

35. Richter M., Fait M.J.G., Eckelt R., Scneider M., Radnik J., Heidemann D., Fricke R. // J. Catal. 2007. Vol. 2007. P. 11-24.

36. Strohmeier B.R., Leyden D.E., Field R.S., Hercules D.M. // J. Catal. 1985. Vol. 94. P. 514-530.

37. Wöllner A., Lange F., Schmelz H., Knözinger H. // Appl. Catal. A. 1993. Vol. 94. P. 181-203.

38. Moretti G. // J. Electron Spectrosc. Relat. Phenom. 1995. Vol. 76. P. 365-370.

39. Сеттерфилд Ч. Практический курс гетергонного катали- за: Пер. с англ. // М.: Мир, 1984. 520 c.

40. Ardiyanti A.R., Khromova S.A., Venderbosch R.H., Yakovlev V.A., Heeres H.J. // Appl. Catal. B: Environmental. 2012. Vol. 117-118. P. 105-117.

41. Kukushkin R.G., Bulavchenko O.A., Kaichev V.V., Yakovlev V.A. //Appl. Catal. B: Environmental. 2015. Vol. 163. P. 531-538.

42. Sinfelt J.H., Carter J.L., Yates D.J.C. // J. Catal. 1972. Vol. 24.P. 283-296.

43. Lin Y.-C., Ho J.-J. // J. Phys. Chem. C. 2011. Vol. 115. P. 19231-19238.

44. Li, X., Luo, X., Jin, Y., Li, J., Zhang, H., Zhang, A., & Xie, J. (2018). Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectivelyupgrading the renewable bio-oils to second generation biofuels. Renewable and Sustainable Energy Reviews, 82(September 2016), 3762—3797. http://doi.org/10.1016/j.rser.2017.10.091


Review

For citations:


Kukushkin R.G., Eletskiy P.M., Bulavchenko O.A., Saraev A.A., Yakovlev V.A. Studies of the Influence of Promoting the Ni/Al2O3 Catalyst with Copper on the Activity to Hydrotreatment of Esters. Kataliz v promyshlennosti. 2019;19(1):40-49. (In Russ.) https://doi.org/10.18412/1816-0387-2019-1-40-49

Views: 613


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)