Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Biocatalysts Based on Bacterial Strain Cells with Amidase Activity for Synthesis of Acrylic Acid from Acrylamide

https://doi.org/10.18412/1816-0387-2019-1-73-79

Abstract

A biocatalytic process for synthesis of acrylic acid was studied in the presence of Rhodococcus erythropolis 4-1 and Alcaligenes faecalis 2 strains with the pronounced amidase activity. The optimal pH of the process was 6–7 for R. erythropolis 4-1 and 7–7.5 for A. faecalis 2, optimal temperature 20–50 °C for both strains, optimal concentration of acrylamide 150 mM for R. erythropolis 4-1 and 250 mM for A. faecalis 2. At the stepwise addition of the substrate, the synthesis was more effective with A. faecalis 2 than with R. erythropolis 4-1. Freezing at –20 °C was shown preferable for storing the biocatalysts. The amidase activity of both humid and dry stored A. faecalis 2 cells immobilized on activated glutaric aldehyde and non-activated chitosan was not decreased.

About the Authors

Yu. G. Maksimova
Institute of Ecology and Genetics of Microorganisms, Perm; Perm State University, Perm
Russian Federation


M. S. Yakimova
Perm National Research Polytechnic University
Russian Federation


A. Yu. Maksimov
Institute of Ecology and Genetics of Microorganisms, Perm; Perm National Research Polytechnic University; Perm State University
Russian Federation


References

1. Wang X., Wang H., Sun Y. // Chem. 2017. V. 3. P. 211—228.

2. Li C., Zhu Q., Cui Z., Wang B., Fang Y., Tan T. // Chem. Eng. Sci. 2018. V. 183. P. 288—294.

3. Manzini S., Huguet N., Trapp O., Paciello R.A., Schaub T. // Catal. Today. 2017. V. 281. P. 379—386.

4. Hollering M., Dutta B., Kühn F.E. // Coord. Chem. Rev. 2016. V. 309. P. 51—67.

5. Rasteiro L.F., Vieira L.H., Possato L.G., Pulcinelli S.H., Santilli C.V., Martins L. // Catal. Today. 2017. V. 296. P. 10—18.

6. Xiaobo X.U., Jianping L.I.N., Peilin C.E.N. // Chinese J. Chem. Eng. 2006. V. 14. № 4. P. 419—427.

7. Zhang X., Lin L., Zhang T., Liu H., Zhang X. // Chem. Eng. J. 2016. V. 284. P. 934—941.

8. Shen M., Zheng Y.-G., Shen Y.-C. // Process Biochem. 2009. V. 44. P. 781—785.

9. Полтавская С.В., Козулина Т.Н., Сингирцев И.Н., Козулин С.В., Шуб Г.М., Воронин С.П. // Биотехнология. 2004. № 1. С. 62—70.

10. Пат. РФ. 2337954.

11. Максимова Ю.Г., Максимов А.Ю., Демаков В.А., Козлов С.В., Овечкина Г.В., Олонцев В.Ф. // Биотехнология. 2010. № 4. С. 51—58.

12. Максимова Ю.Г., Демаков В.А., Овечкина Г.В. // Вестник биотехнологии и физико-химической биологии имени Ю.А. Овчинникова. 2011. Т. 7. № 2. С. 5—10.

13. Справочник биохимика / Досон Р., Эллиот Д., Эллиот У., Джонс К. // М.: Мир, 1991. 544 с.

14. Joshi S.J., Abed R.M.M. // Environ. Process. 2017. V. 4. № 2. P. 463—476.

15. Zödl B., Schmid D., Wassler G., Gundacker C., Leibetseder V., Thalhammer T., Ekmekcioglu C. // Toxicology. 2007. V. 232. № 1—2. P. 99—108.

16. Ермилова Е.В. Молекулярные аспекты адаптации прокариот. СПб: Изд-во СПб. ун-та, 2007. 299 с.

17. Максимова Ю.Г., Васильев Д.М., Зорина А.С., Овечкина Г.В., Максимов А.Ю. // Прикладная биохимия и микробиология. 2018. Т. 54. № 2. С. 158—164.

18. Thakur N., Kumar V., Sharma N.K., Thakur S., Bhalla T.C. // Protein Pept Lett. 2016. V. 23. № 2. P. 152—158.

19. Глинский С.А., Козулин С.В., Козулина Т.Н., Полтавская С.В., Яненко А.С., Леонова Т.Е. // Биотехнология. 2010. № 1. С. 17—24.


Review

For citations:


Maksimova Yu.G., Yakimova M.S., Maksimov A.Yu. Biocatalysts Based on Bacterial Strain Cells with Amidase Activity for Synthesis of Acrylic Acid from Acrylamide. Kataliz v promyshlennosti. 2019;19(1):73-79. (In Russ.) https://doi.org/10.18412/1816-0387-2019-1-73-79

Views: 640


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)