Synthesis of iminodiacetic acid in a microchannel reactor
Abstract
The features of the iminodiacetic acid (HIDA) synthesis by ehydrogenation of diethanolamine (DEA) on the Cu/ZrO2 catalyst in flow microchannel reactor in comparison with the synthesis in the autoclave are studied. It was found that the specific performance of reactors in terms of the reaction volume and weight of the catalyst in a microchannel reactor are 4,38 gHIDA/(cm3·h) and 0,49 gHIDA/ (g cat·h), respectively, while in an autoclave – 0,018 gHIDA/(cm3·h) and 0,46 gHIDA/(g cat·h). Analysis of kinetic data indicates that the synthesis of HIDA proceeds in two stages with the formation of an intermediate N-(2-hydroxyethyl)glycine (Bicine). A formal two-step kinetic scheme of this process and calculated apparent rate constants of stages are proposed. It was found that the apparent constants of rate of stages are magnitude greater in several orders for the microchannel reactor than the corresponding constants for the autoclave synthesis. Specific productivity, calculated for the reaction volume for the microchannel reactor, also higher in two orders of magnitude than for the autoclave, what is indicating that a substantial intensification of the process in the channels of sub-millimeter sizes due to the high efficiency of heat and mass transfer.
About the Authors
D. V. AndreevRussian Federation
A. G. Gribovsky
Russian Federation
L. L. Makarshin
Russian Federation
N. Yu. Adonin
Russian Federation
S. A. Prikhod’ko
Russian Federation
Z. P. Pai
Russian Federation
V. N. Parmon
Russian Federation
References
1. Liu D., Cant N.W., Smith A.J., Wainwright M.S. The activity of chromia-promoted skeletal copper catalysts for the oxidative dehydrogenation of ethanolamine to sodium glycinate based on measurements in a modified autoclave // Appl. Catal. 2006. V. 297. P. 18.
2. Franz J.E., Mao M.K., Sikorski J.A. Glyphosate: A Unique Global Pesticide. ACS Monograph 189, Washington, DC.: American Chemical Society, 1997.
3. Pat. 2384817 USA. Catalytic alkaline oxidation of alcohols. Chitwood H.C. 1945.
4. Pat. 4782183 USA. Method for manufacture of amino-carboxylic acid salts. Goto T., Yokoyama H. 1988.
5. Pat. 5292936 USA. Process to prepare amino carboxylic acid salts. Franczyk T. 1994.
6. Pat. 6376708 USA. Process and catalyst for dehydrogenating primary alcohols to make carboxylic acid salts. Morgenstern D., Arhancet J.P. 2002.
7. Pat. 5220054 USA. Process for producing aminocarboxylic acid salt. Urano Y., Kadono Y. 1993.
8. Ehrfeld W, Hessel V, Löwe H. Microreactors — new technology for modern chemistry. Weinheim: Willey-VCH,
9.
10. Макаршин Л.Л., Андреев Д.В., Грибовский А.Г., Дутов П.М., Хантаков Р.М., Пармон В.Н. Исследование влияния конструкции микроканальных пластин на производительность микрореакторов паровой конверсии метанола // Кинетика и катализ. 2007. Т. 48. № 5. С. 1—8.
11. Пат. 2323047 РФ. Каталитические микроканальные пластины и способ их приготовления. Макаршин Л.Л., Грибовский А.Г., Андреев Д.В., Пармон В.Н. 2008.
12. Einarsson S., Joseffsson B., Lagerkvist S. Determination of Amino Acids with 9-Fluorenylmethyl Chloroformate and Reversed-Phase High-Performance Liquid Chromatography // J. Chromatography. 1983. V. 282. P. 609.
Review
For citations:
Andreev D.V., Gribovsky A.G., Makarshin L.L., Adonin N.Yu., Prikhod’ko S.A., Pai Z.P., Parmon V.N. Synthesis of iminodiacetic acid in a microchannel reactor. Kataliz v promyshlennosti. 2012;(5):23-31. (In Russ.)