

The Influence of the Cobalt-Containing Component of the Composite Catalyst on the One-Stage Process for Synthesis of Liquid Hydrocarbons from CO and H2
https://doi.org/10.18412/1816-0387-2019-3-178-186
Abstract
The influence of the cobalt-containing component (Co-Al2O3/SiO2, Co-Re/Al2O3 and Co-Re/TiO2) of a composite catalyst was studied in the Fischer – Tropsch combined process for synthesis and hydrotransformation of hydrocarbons. A flow fixed-bed reactor was used for characterization of the catalytic properties at 2 MPa, flow rate 1000 h–1, 240–280 °C for 40–90 hours of continuous operation. The highest productivity and selectivity to C5+ hydrocarbons equal to 106 kg/(m3 cat·ч) and 67.1 %, respectively, was characteristic of the composite catalyst Co-Al2O3/SiO2(35%)/ZSM-5(30%)/Al2O3(30%) at 240 °C. The comparable activities were observed with the catalysts Co-Re/Al2O3 and Co-Al2O3/SiO2 but the former provided the formation of unsaturated hydrocarbons in a lower proportion in the products. The use of the Co-Re/TiO2 catalyst at elevated temperature (up to 280 °C) allowed the molecular mass distribution of the products to be shifted towards the formation of the gasoline fraction. The rate of the catalyst deactivation was established to increase in the series Co-Al2O3/SiO2 > Co-Re/Al2O3 > Co-Re/TiO2.
About the Authors
R. E. YakovenkoRussian Federation
I. N. Zubkov
Russian Federation
G. B. Narochnyi
Russian Federation
S. V. Nekroenko
Russian Federation
A. P. Savost’yanov
Russian Federation
References
1. Ail S.S., Dasappa S. // Renewable and Sustainable Energy Reviews. 2016. V. 58. P. 267-286.
2. Yakovenko R.E, Narochnyi G.B., Savost’yanov A.P., Kirsanov V.A. // Chemical and petroleum engineering. 2015. Vol. 3. P. 159-163.
3. Wood D.A., Chikezie N., Towler B.F. // Journal of Natural Gas Science and Engineering. 2012. V. 9. P. 196-208.
4. Wang Y., Zhao W., Li Z., Wang H., Wu J., Li M.. Hu Z., Wang Y., Huang J., Zhao Y. // Journal of Porous. 2015. V. 22. p. 339.
5. Савостьянов А.П., Яковенко Р.Е., Нарочный Г.Б., Лапидус А.Л. // Химия твердого топлива. 2015. № 6. С. 19—22.
6. Савостьянов А.П., Нарочный Г.Б., Яковенко Р.Е., Салиев А.Н., Сулима С.И., Зубков И.Н., Некроенко С.В., Митченко С.А. // Нефтехимия. 2018. Т. 57. С. 809—812.
7. Eggenhuisen T.M., Breejen J.P., Verdoes D., Jongh P.E., Jong K.P. // JACS. 2010. V. 132 (51). P. 18318-18325.
8. Eschemann T.O., Oenema J., Jong K.P. // Catalysis Today. 2016. V. 261. P. 60-66.
9. Лапидус А.Л., Павлова В.А., Чинь Н.К., Елисеев О.Л., Гу-щин В.В., Давыдов П.Е. // Нефтехимия. 2012. Т. 49. № 4. С. 319—323.
10. Todic B., Nowicki L., Nikacevic N., Bukur D.B. // Catalysis Today. 2015. V. 261. P. 28-39.
11. Zhang Q., Deng W., Wang Y. // Journal of Energy Chemistry. 2013. V. 22. P. 27-38.
12. European standard norme européenne europäische norm EN 228 — Automotive fuels — Unleaded petrol — Requirements and test methods.
13. ГОСТ 305—2013. Топливо дизельное. Технические условия [Текст]. — Введ. 2015.01.01. М.: СтандартИнформ: Изд-во стандартов, 2014. 12 с.
14. Kibby C., Jothimurugesan K., Das T., Lacheen H.S., Rea T., Saxton R.J. // Catalysis Today. 2013. V. 215. P. 131-141.
15. Wei L., Zhao Y., Zhang Y., Liu C., Hong J., Xiao Q., Xiong H., Li J. // ChemCatChem. 2017. V. 9. P. 3895-3903.
16. Deldari H. // Applied Catalysis A: General. 2005. V. 293. P. 1-10.
17. Yao M., Yao N., Liu B., LiS., Xu L. // Catalysis science & Technology. 2015. V. 5. P. 2821-2828.
18. Kang J., Wang X. // Industrial & Engineering Chemistry Research. 2016. V. 55. P. 13008-13019.
19. Wang Y., Jiang Y., Huang J., Wu J. // RSC Advances. 2016. V. 6. P. 107498-107506.
20. Sineva L.V., Asalieva E.Yu, Mordkovich V.Z. // Russian Chemical Reviews. 2015. No. 84. P. 1176-1189.
21. Kibby C., Jothimurugesan K., Das T., Lacheen H.S., Rea T., Saxton R.J. // Catalysis Today. 2013. V. 215. P. 131-141.
22. Kibby C. / C. Kibby, K. Jothimurugesan, T. Das, H.S. Lacheen, T. Rea, R.J. Saxton // Catalysis Today. 2013. Vol. 215. P. 131.
23. Sartipi S., Alberts M., Meijerink M. J., Keller T. C., Prez-Ramrez J., Gascon J., Kapteijn F. // ChemSusChem. 2013. V. 6. P. 1646-1650.
24. Pereira A., J.′lez-Carballo, Perez-Alonso F., Rojas S., Fierro J. // Topics in Catalysis. 2011. V. 54. P. 179-189.
25. Kang Suk-Hwan, Bae Jong Wook, Sai Prasad P. S., Jun Ki- Won // Catalysis Letters. 2008. V. 125. P. 246-270.
26. Freitez A., Pabst K., Kraushaar-Czarnetzki B., Schaub G. // Industrial & Engineering Chemistry Research. 2011. V. 50. P. 13732-13741.
27. Yanga G., Xinga C., Hirohama W., Jina Y., Zenga C., Suehiro Y., Wang T., Yoneyama Y., Tsubaki N. // Catalysis Today. 2013. V. 215. P. 29-35.
28. Yang, G. / G. Yang, C. Xing, W. Hirohama, Y. Jin, C. Zenga, Y. Suehiro, T. Wang, Y. Yoneyama, N. Tsubaki // Catalysis Today. 2013. V. 215. P. 29-35.
29. Алхимов С.А., Григорьев Д.А., Михайлов М.Н. // Известия Академии наук. Серия химическая. 2013. № 5. С. 1176—1182.
30. Алхимов С.А., Григорьев Д.А., Михайлов М.Н. // Катализ в промышленности. 2013. № 4. С. 31—41.
31. Sineva L.V., Mordkovich V.Z., Khatkova E.Yu. // Mendeleev Communications. V. 23. No. 1. 2013. P. 44-45.
32. Синева JI.В., Асалиева Е.Ю., Мордкович В.З. // Успехи химии. 2015. Т. 84. № 11. С. 1176—1189.
33. Нарочный Г.Б., Савостьянов А.П., Яковенко Р.Е., Бакун В.Г. // Катализ в промышленности. 2016. № 1. С. 37—42.
34. Savost’yanov A.P., Yakovenko R.E., Sulima S.I., V.G. Bakun, Narochnyi G.B., Chernyshev V.M., Mitchenko S.A. // Catalysis Today. 2017. V. 279. P. 107-114.
35. PDF-2. The powder diffraction file TM. International Center for Diffraction Data (ICDD). PDF-2 Release 2012. web site: www. icdd.com (2014).
36. Young R.A. The Rietveld Method. Oxford University Press. 1995. 298 p.
37. Schanke D., Vada S., Blekkan E.A., Hilmen A.M., Hoff A., Holmen A. // Journal of Catalysis. 1995. V. 156. P. 85-95.
38. Xu D., Li W., Duan H., Ge Q., Xu H. // Catalysis Letters. 2005. V. 102. P. 229-235.
39. Коттон Ф., Уилкинсон Дж. Основы неорганической химии. М.: Мир. 1979. 677 с.
40. Булавченко О.А., Черепанова С.В., Малахов В.В., Довлитова Л.C. // Кинетика и катализ. 2009. Т. 50. № 2. С. 205—211.
41. Conte M., Xu B., Davies T.E. // Microporous Mesoporous Materials. 2012. V. 164. P. 207-213.
42. Wilson S.J. // Journal of Solid State Chemistry. 1979. V. 30. P. 241-255.
43. Савостьянов А.П., Яковенко Р.Е., Нарочный Г.Б., Бакун В.Г., Сулима С.И., Якуба Э.С., Митченко С.А. // Кинетика и катализ. 2017. Т. 58. № 1. С. 86—97.
44. Pardo-Tarifa F., Cabrera S., Sanchez-Dominguez M., Boutonnet M. // International journal of hydrogen energy. 2017. P. 1-12.
Review
For citations:
Yakovenko R.E., Zubkov I.N., Narochnyi G.B., Nekroenko S.V., Savost’yanov A.P. The Influence of the Cobalt-Containing Component of the Composite Catalyst on the One-Stage Process for Synthesis of Liquid Hydrocarbons from CO and H2. Kataliz v promyshlennosti. 2019;19(3):178-186. (In Russ.) https://doi.org/10.18412/1816-0387-2019-3-178-186