Preview

Катализ в промышленности

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Оптимизация свойств алюмооксидного носителя катализаторов гидроочистки путем введения бора и серы на стадии получения псевдобемита гидротермальной обработкой продукта быстрой термической обработки гиббсита

https://doi.org/10.18412/1816-0387-2019-3-193-205

Аннотация

Рассмотрена проблема оптимизации текстурных характеристик и химического состава алюмооксидного носителя катализатора гидроочистки вакуумного газойля, синтез которого основан на современной экологически безопасной технологии быстрой термической обработки гиббсита. Разработаны подходы к увеличению удельной площади поверхности за счет введения на стадии синтеза псевдобемита с игольчатым типом частиц неорганических добавок, включающих в себя бор или серу. Установлено, что введение таких модификаторов позволяет повысить SBET на 50–100 м2/г по сравнению с максимальными значениями, которые можно достичь за счет изменения стандартных параметров процесса гидротермальной обработки. Показано, что введение бора на стадии синтеза псевдобемита приводит к увеличению в два и более раз каталитической активности CoNiMoP-катализатора в реакциях гидрообессеривания и гидродеазотирования вакуумного газойля по сравнению с аналогичным катализатором, но отличающимся тем, что бор в его состав введен через пропиточный раствор.

Об авторах

В. В. Данилевич
Институт катализа им. Г.К. Борескова СО РАН, Новосибирск
Россия


Е. А. Столярова
Институт катализа им. Г.К. Борескова СО РАН, Новосибирск
Россия


Ю. В. Ватутина
Институт катализа им. Г.К. Борескова СО РАН, Новосибирск
Россия


Е. Ю. Герасимов
Институт катализа им. Г.К. Борескова СО РАН, Новосибирск
Россия


В. А. Ушаков
Институт катализа им. Г.К. Борескова СО РАН, Новосибирск
Россия


А. В. Сайко
Институт катализа им. Г.К. Борескова СО РАН, Новосибирск
Россия


О. В. Климов
Институт катализа им. Г.К. Борескова СО РАН, Новосибирск
Россия


А. С. Носков
Институт катализа им. Г.К. Борескова СО РАН, Новосибирск
Россия


Список литературы

1. Vosoughi V., Dalai A.K., Abatzoglou N., et al. Performances of promoted cobalt catalysts supported on mesoporous alumina for Fischer-Tropsch synthesis // Appl. Catal. A Gen. 2017. Vol. 547. P. 155-163.

2. Sircar S., Rao M.B., Golden T.C. Chapter 2.12 Drying of gases and liquids by activated alumina // Adsorption on New and Modified Inorganic Sorbents / ed. Dąbrowski A. Elsevier, 1996. Vol. 99, № Supplement C. P. 629-646.

3. Banzaraktsaeva S.P., Ovchinnikova E.V, Isupova L.A., et al. Catalytic dehydration of ethanol into ethylene in a tubular reactor of the pilot installation on alumina catalysts with varied grain size // Russ. J. Appl. Chem. 2017. Vol. 90, № 2. P. 169-178.

4. Ivanova A.S. Aluminum oxide and systems based on it: Properties and applications // Kinet. Catal. 2012. Vol. 53, № 4. P. 425-439.

5. Catalyst Supports and Supported Catalysts: Theoretical and Applied Concepts / ed. Stiles A.B. Boston : Butterworths, 1987. 270 p.

6. Digne M., Sautet P., Raybaud P., et al. Structure and stability of aluminum hydroxides: A theoretical study // J. Phys. Chem. B. 2002. Vol. 106, № 20. P. 5155-5162.

7. Hochepied J.F., Nortier P. Influence of precipitation conditions (pH and temperature) on the morphology and porosity of boehmite particles // Powder Technol. 2002. Vol. 128, № 2-3. P. 268-275.

8. Yoldas B.E. Hydrolysis of aluminium alkoxides and bayerite conversion // J. Appl. Chem. Biotechnol. 2007. Vol. 23, № 11. P. 803-809.

9. Mishra D., Anand S., Panda R.K., et al. Hydrothermal preparation and characterization of boehmites // Mater. Lett. 2000. Vol. 42, № 1. P. 38-45.

10. Egorova S.R., Mukhamed’yarova A.N., Kurbangaleeva A.Z., et al. Formation of closed mesopores in boehmite during the phase transformation of gibbsite under hydrothermal conditions // React. Kinet. Mech. Catal. 2018. Vol. 125, № 2. P. 873-885.

11. Isupova L.A., Tanashev Y.Y.Y., Kharina I.V., et al. Physicochemical properties of TseflarTM-treated gibbsite and its reactivity in the rehydration process under mild conditions // Chem. Eng. J. 2005. Vol. 107, № 1. P. 163-169.

12. Jaworska-Galas Z., Janiak S., Miśta W., et al. Morphological and phase changes of transition aluminas during their rehydration // J. Mater. Sci. 1993. Vol. 28, № 8. P. 2075-2078.

13. Matveyeva A.N., Pakhomov N.A., Murzin D.Y. Recycling of Wastes from the Production of Alumina-Based Catalyst Carriers // Ind. Eng. Chem. Res. 2016. Vol. 55, № 34. P. 9101-9108.

14. Danilevich V.V., Klimov O.V., Nadeina K.A., et al. Novel ecofriendly method for preparation of mesoporous alumina from the product of rapid thermal treatment of gibbsite // Superlattices Microstruct. 2018. Vol. 120. P. 148-160.

15. Kul’ko E.V, Ivanova A.S., Kruglyakov V.Y., et al. Synthesis of aluminum oxides from the products of the rapid thermal decomposition of hydrargillite in a centrifugal flash reactor: II. Structural and textural properties of aluminum hydroxide and oxide obtained from the product of the centrifugal thermal // Kinet. Catal. 2007. Vol. 48, № 2. P. 316-326.

16. Jovanović N., Novaković T., Janaćković J., et al. Properties of activated alumina obtained by flash calcination of gibbsite // J. Colloid Interface Sci. 1992. Vol. 150, № 1. P. 36-41.

17. Safaei M. Effect of temperature on the synthesis of active alumina by flash calcination of gibbsite // J. Aust. Ceram. Soc. 2017. Vol. 53, № 2. P. 485-490.

18. Salomão R., Kawamura M., Souza A.D.V., et al. Hydratable Alumina-Bonded Suspensions: Evolution of Microstructure and Physical Properties During First Heating // Interceram. 2017. Vol. 66. P. 28-37.

19. Zolotovskii B.P., Buyanov R.A., Bukhtiyarova G.A., et al. Lowwaste production of alumina catalysts for gas sulfur recovery // React. Kinet. Catal. Lett. 1995. Vol. 55, № 2. P. 523-535.

20. Tanashev Y.Y., Moroz E.M., Isupova L.A., et al. Synthesis of aluminum oxides from the products of the rapid thermal decomposition of hydrargillite in a centrifugal flash reactor: II. Physicochemical properties of the products obtained by the centrifugal thermal activation of hydrargillite // Kinet. Catal. 2007. Vol. 48, № 1. P. 153-161.

21. Miño A., Lancelot C., Blanchard P., et al. Strategy to produce highly loaded alumina supported CoMo-S catalyst for straight run gas oil hydrodesulfurization // Appl. Catal. A Gen. 2017. Vol. 530. P. 145-153.

22. Rayo P., Rodríguez-Hernández A., Torres-Mancera P., et al. Different alumina precursors in the preparation of supports for HDT and HDC of Maya crude oil // Catal. Today. Elsevier, 2018. Vol. 305. P. 2-12.

23. De Jong K.P. Synthesis of Solid Catalysts // Synthesis of Solid Catalysts. 2009. 1-401 p.

24. Ancheyta J., Rana M.S., Furimsky E. Hydroprocessing of heavy petroleum feeds: Tutorial // Catal. Today. 2005. Vol. 109, № 1-4. P. 3-15.

25. Klimov O.V., Leonova K.A., Koryakina G.I., et al. Supported on alumina Co-Mo hydrotreating catalysts: Dependence ofcatalytic and strength characteristics on the initial AlOOH particle morphology // Catal. Today. 2014. Vol. 220-222. P. 66-77.

26. Zhang W., Zheng X., Zhao X., et al. Carboxylic acid assisted synthesis of ordered mesoporous silicon-doped γ-alumina with high thermal stability // Mater. Lett. 2015. Vol. 160, № Supplement C. P. 85-87.

27. Dumeignil F., Sato K., Imamura M., et al. Characterization and hydrodesulfurization activity of CoMo catalysts supported on boron-doped sol-gel alumina // Appl. Catal. A Gen. 2006. Vol. 315. P. 18-28.

28. Danilevich V.V., Isupova L.A., Paukshtis E.A., et al. Effect of modifying alumina desiccants with sulfuric acid on their physicochemical properties // Kinet. Catal. 2014. Vol. 55, № 3. P. 372-379.

29. Danilevich V.V., Lakhmostov V.S., Zakharov V.P., et al. A Centrifugal Drum-type Reactor for Fast Thermal Treatment of Hydrargillite // Katal. v promyshlennosti. 2016. Vol. 16, № 1. P. 13-28.

30. Klimov O.V., Nadeina K.A., Dik P.P., et al. CoNiMo/Al2O3 catalysts for deep hydrotreatment of vacuum gasoil // Catal. Today. 2016. Vol. 271. P. 56-63.

31. Sing K.S.W. Characterization of porous materials: Past, present and future // Colloids Surfaces A Physicochem. Eng. Asp. Elsevier, 2004. Vol. 241, № 1-3. P. 3-7.

32. Klimov O.V., Vatutina Y.V., Nadeina K.A., et al. CoMoB/Al2O3 catalysts for hydrotreating of diesel fuel. The effect of the way of the boron addition to a support or an impregnating solution // Catal. Today. 2018. Vol. 305. P. 192-202.

33. Karouia F., Boualleg M., Digne M., et al. Control of the textural properties of nanocrystalline boehmite (γ-AlOOH) regarding its peptization ability // Powder Technol. 2013. Vol. 237. P. 602-609.

34. Tsybulya S.V., Kryukova G.N. Nanocrystalline transition aluminas: Nanostructure and features of x-ray powder diffraction patterns of low-temperature Al2O3 polymorphs // Phys. Rev. B - Condens. Matter Mater. Phys. 2008. Vol. 77, № 2. P. 024112.

35. Лавренов А.В., Булучевский Е.А., Карпова Т.Р. и др. Синтез, строение и свойства боратсодержащих оксидных катализаторов для процессов нефтехимии и синтеза компонентов моторных топлив // Химия в Интересах Устойчивого Развития. 2011. Vol. 1. P. 87–95.

36. Карпова Т.Р., Булучевский Е.А., Лавренов А.В. и др. Синтез, строение и свойства системы B2O3/Al2O3 // Химия в Интересах Устойчивого Развития. 2013. Vol. 1. P. 61–68.

37. Ковальская А.А., Надеина К.А., Казаков М.О. и др. Влияние способа введения бора в NiMo/Al2O3 катализаторы защитного слоя на удаление кремния из дизельных фракций // Журнал прикладной химии. 2018. Vol. 91, № 12. P. 1760–1767.

38. Thommes M., Kaneko K., Neimark A.V., et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) // Pure Appl. Chem. 2015. Vol. 87, № 9-10. P. 1051-1069.

39. Thommes M., Cychosz K.A. Physical adsorption characterization of nanoporous materials: Progress and challenges // Adsorption. 2014. Vol. 20, № 2-3. P. 233-250.

40. Vatutina Y.V., Klimov O.V., Nadeina K.A., et al. Influence of boron addition to alumina support by kneading on morphology and activity of HDS catalysts // Appl. Catal. B Environ. 2016. Vol. 199. P. 23-32.

41. Usman U., Takaki M., Kubota T., et al. Effect of boron addition on a MoO3/Al2O3 catalyst Physicochemical characterization // Appl. Catal. A Gen. Elsevier, 2005. Vol. 286, № 1. P. 148-154.

42. Azizi N., Ali S.A., Alhooshani K., et al. Hydrotreating of light cycle oil over NiMo and CoMo catalysts with different supports // Fuel Process. Technol. Elsevier, 2013. Vol. 109. P. 172-178.


Рецензия

Для цитирования:


Данилевич В.В., Столярова Е.А., Ватутина Ю.В., Герасимов Е.Ю., Ушаков В.А., Сайко А.В., Климов О.В., Носков А.С. Оптимизация свойств алюмооксидного носителя катализаторов гидроочистки путем введения бора и серы на стадии получения псевдобемита гидротермальной обработкой продукта быстрой термической обработки гиббсита. Катализ в промышленности. 2019;19(3):193-205. https://doi.org/10.18412/1816-0387-2019-3-193-205

For citation:


Danilevich V.V., Stolyarova E.A., Vatutina Yu.V., Gerasimov E.Yu., Ushakov V.A., Saiko A.V., Klimov O.V., Noskov A.S. Optimization of Properties of the Alumina Support of Hydrotreatment Catalysts by Introducing Boron and Sulfur at the Stage of Pseudoboehmite Synthesis via Hydrothermal Treatment of the Product of Flash Thermal Treatment. Kataliz v promyshlennosti. 2019;19(3):193-205. (In Russ.) https://doi.org/10.18412/1816-0387-2019-3-193-205

Просмотров: 837


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)