Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Alkali Modified Activated Carbons for Sorption and Catalytic Oxidation of Hydrogen Sulfide During Air Cleaning: The Influence of Thermal Treatment on Properties of Materials

https://doi.org/10.18412/1816-0387-2019-3-219-226

Abstract

Modified carbon materials were synthesized by impregnating activated carbons with an aqueous solution of sodium hydroxide followed by thermal treatment in air at moderate temperature (60–200 °C). The samples were tested for sorption-catalytic cleaning of air from hydrogen sulfide. Particular attention was paid to the influence of temperature of thermal treatment (activation) on sorption capacity of the modified carbons to H2S. The modifying of activated carbons by impregnation with aqueous NaOH followed by their thermal treatment in air at 200 °C was shown to allow the dynamic sorption capacity to H2S to be more than 8 times increased. The results obtained can be used to synthesize new materials based on commercial activated carbons for removal of hydrogen sulfide from air.

About the Authors

I. E. Barkovskiy
Boreskov Institute of Catalysis, Novosibirsk; Novosibirsk State University
Russian Federation


A. I. Lysikov
Boreskov Institute of Catalysis, Novosibirsk; Novosibirsk State University
Russian Federation


Zh. V. Veselovskaya
Boreskov Institute of Catalysis, Novosibirsk; Novosibirsk State University
Russian Federation


N. V. Mal’tseva
Boreskov Institute of Catalysis, Novosibirsk
Russian Federation


A. G. Okunev
Boreskov Institute of Catalysis, Novosibirsk; Novosibirsk State University
Russian Federation


References

1. Active Carbon. Eds. Bansal R.C., Donnet J.B., Stoeckli F. New York: Marcel Dekker, 1988. 482 p.

2. Radovic L.R., Sudhakar C. Carbon as a Catalyst Support: Production, Properties and Applications. Introduction to Carbon Technologies. Eds. Marsh H., Heintz E.A., Rodriguez- Reinoso F. Alicante: University of Alicante, 1997. P. 103-165.

3. Boehm H.P. // Carbon. 1994. V. 32. № 5. P. 759.

4. Hedden K., Humber L., Rao B.R. // VDI-Bericht. 1976. №. 253. P. 37-42.

5. Bagreev A., Adib F., Bandosz T.J. // Carbon. 2001. V. 39. № 12. P. 1987—1905.

6. Steijns M., Mars P. // Ind. Eng. Chem. Prod. Res. Dev. 1977. V. 16. № 1. P. 35—41.

7. Adib F., Bagreev A., Bandosz T.J. // Langmuir. 2000. V. 16. № 4. P. 1980-1986.

8. Bandosz T.J., Bagreev A., Adib F., Turk A. // Environ. Sci. Technol. 2000. V. 34. № 6. P. 1069-1074.

9. Adib F., Bagreev A., Bandosz T.J. // Environ. Sci. Technol. 2000. V. 34. № 4. P. 686-692.

10. Adib F., Bagreev A., Bandosz T.J. // J. Colloid Interface Sci. 1999. V. 216. № 2. P. 360-369.

11. Menezes R.L.C.B., Moura K.O., De Lucena S.M.P., Azevedo D.C.S., Bastos-Neto M. // Ind. Еng. Chem. Res. 2018. V. 57. № 6. P. 2248-2257.

12. Bagreev A., Bandosz T.J. // Ind. Еng. Chem. Res. 2002. V. 41. № 4. P. 672-679.

13. Sitthikhankaew R., Chadwick D., Assabumrungrat S., Laosiripojana N. // Chem. Eng. Comm. 2014. V. 201. № 2. P. 257-271.

14. Chiang H.L., Tsai J.H., Tsai C.L., Hsu Y.C. // Gas. Sep. Sci. Technol. 2000. V. 35. № 6. P. 903-918.

15. Sitthikhankaew R., Chadwick D., Assabumrungrat S., Laosiripojana N. // Fuel Process. Tech. 2014. V. 124. P. 249-257

16. Przepiorski J., Yoshida S., Oya A. // Carbon. 1999. V. 37. № 12. P. 1881-1890.

17. Исмагилов З.Р., Хайрулин С.Р., Неведров А.В., Папин А.В., Жбырь Е.В. // Вестник КузГТУ. 2013. № 1. С. 87—92.

18. ASTM D6646-03(2014). Test Method for Determination of the Accelerated Hydrogen Sulfide Breakthrough Capacity of Granular and Pelletized Activated Carbon. West Conshohocken: ASTM International, 2014.

19. Shang G., Liu L., Chen P., Shen G., Li Q. // J. Air Waste Manag. Assoc. 2016. V. 66. № 5. P. 439-445.

20. Мальцева Н.В., Головин В.А., Чикунова Ю.О., Грибов Е.Н. // Электрохимия. 2018. Т. 54. № 5. С. 489-496.

21. Demir-Cakan R., Morcrette M., Nouar F., Davoisne C., Devic T., Gonbeau D., Dominko R., Serre C., Ferey G., Tarascon J.-M. // J. Am. Chem. Soc. 2011. V. 133. № 40. P. 16154-16160.

22. Appay M.D., Manoli J.M., Potvin C., Muhler M., Wild U., Pozdnyakova O., Paál Z. // J. Catal. 2004. V. 222. № 2. P. 419-428.

23. Wu Z., Jin R., Wang H., Liu Y. // Catal. Commun. 2009. V. 10. № 6. P. 935-939. https://doi.org/10.1016/j.catcom.2008.12.032.

24. Karthe S., Szargan R., Suoninen E. // Appl. Surf. Sci. 1993. V. 72. № 2. P. 157-170.

25. Мазгаров А.М., Корнетова О.М. Технологии очистки попутного нефтяного газа от сероводорода. Казань: Казанский ун-т, 2015. 70 с.

26. Агаев Г.А., Настека В.И., Сеидов З.Д. Окислительные процессы очистки сернистых природных газов и углеводородных конденсатов. М.: Недра, 1996. 301 с.


Review

For citations:


Barkovskiy I.E., Lysikov A.I., Veselovskaya Zh.V., Mal’tseva N.V., Okunev A.G. Alkali Modified Activated Carbons for Sorption and Catalytic Oxidation of Hydrogen Sulfide During Air Cleaning: The Influence of Thermal Treatment on Properties of Materials. Kataliz v promyshlennosti. 2019;19(3):219-226. (In Russ.) https://doi.org/10.18412/1816-0387-2019-3-219-226

Views: 1211


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)