

Methods for the synthesis of dichloroanhydrides of phthalic acids
https://doi.org/10.18412/1816-0387-2019-4-289-298
Abstract
Dichloroanhydrides of isophthalic (isophthaloyl chloride) and terephthalic (terephthaloyl chloride) acids are, undoubtedly, strategically important compounds. Among their main application areas is synthesis of Aramid fibers to be used for manufacturing dual use materials including synthesis of Terlon®, Phenylon®, Armos®, Tegelen®, SVM®, and Rusar® fibers. Specific requirements for quality of the target anhydrides and feedstock determine the choice of the synthetic methods. In the review paper, various methods, including catalytic methods, for the synthesis of iso- and terephthaloyl chlorides based on the use of different types of feedstock are discussed. Main methods for analysis of these compounds are described in detail.
About the Authors
D. Yu. YushchenkoRussian Federation
Е. G. Zhizina
Russian Federation
Z. P. Pai
Russian Federation
References
1. Aly K.I., Moustafa A.H., Ahmed E.K., Abd El-lateef H.M., Mohamed M.G., Mohamed S.M. // Chinese J. Polym. Sci. 2018. V. 36. № 7. P. 835-847. DOI: 10.1007/s10118-018-2101-3.
2. Racané L., Pavelić S.K., Nhili R., Depauw S., Paul-Constant C., Ratkaj I., David-Cordonnier M.-H., Pavelić K., Tralić-Kulenović V., Karminski-Zamola G. // Eur. J. Med. Chem. 2013. V. 63. P. 882-891. DOI: 10.1016/j.ejmech.2013.02.026.
3. Fakhar I., Hussien N.J., Sapari S., Bloh A.H., Yusoff S.F.M., Hasbullah S.A., Yamin B.M., Mutalib S.A., Shihab M.S., Yousif E. // J. Mol. Struct. 2018. V. 1159. P. 96-102. DOI: 10.1016/j.molstruc.2018.01.032
4. Shimizu M., Shigitani R., Kinoshita T., Sakaguchi H. // Chem.—An Asian J. 2018. P. 10. DOI: 10.1002/asia.201801619.
5. Morsi S.M.M., Mohamed H.A., El-Sabbagh S.H. // Mater. Chem. Phys. 2019. V. 224. P. 206-216. DOI: 10.1016/j.matchemphys. 2018.12.017.
6. Fakhar I., Yamin B.M., Hasbullah S.A. // Chem. Cent. J. 2017. V. 11. № 1. P. 1-16. DOI: 10.1186/s13065-017-0304-2.
7. Ravi S., Ahn W.S. // Microporous Mesoporous Mater. 2018. V. 271. P. 59-67. DOI: 10.1016/j.micromeso.2018.05.038.
8. Beristain M.F., Ortega A., Gomez-Sosa G., Ogawa T., Halim F., Walser A., Dorsinville R. // Des. Monomers Polym. 2016. V. 19. № 4. P. 340-346. DOI: 10.1080/15685551.2016.1152544
9. Kawahara Y., Ichiura H., Ohtani Y. // J. Appl. Polym. Sci. 2017. V. 134. № 9. P. 1-8. DOI: 10.1002/app.44530.
10. Bogdal D., Galica M., Bartus G., Wolinski J., Wronski S. // Org. Process Res. Dev. 2010. V. 14. № 3. P. 669-683. DOI: 10.1021/op100040x
11. Awad A., Aljundi I.H. // Korean J. Chem. Eng. 2018. V. 35. № 8. P. 1700-1709. DOI: 10.1007/s11814-018-0079-8
12. Abdellah M.H., Pérez-Manríquez L., Puspasari T., Scholes C.A., Kentish S.E., Peinemann K.-V. // J. Memb. Sci. 2018. V. 567. P. 139-145. DOI: 10.1016/j.memsci.2018.09.042.
13. Pérez-Manríquez L., Neelakanda P., Peinemann K.-V. // J. Memb. Sci. 2018. V. 554. P. 1-5. DOI: 10.1016/j.memsci.2018.02.055
14. Mera H., Takata T. // Ullmann’s Encyclopedia of Industrial Chemistry. 2000. V. 1. № 2. P. 131-139. DOI: 10.1002/14356007.a13_001.
15. Quintanilla J. // Polym. Eng. Sci. 1999. V. 39. № 3. P. 559-585. DOI: 10.1002/pen.11446.
16. Yousif E., Haddad R. // Springerplus. 2013. V. 2. № 1. P. 398. DOI: 10.1186/2193-1801-2-398.
17. Akdag A., Kocer H.B., Worley S.D., Broughton R.M., Webb T.R., Bray T.H. // J. Phys. Chem. B. 2007. V. 111. № 20. P. 5581-5586. DOI: 10.1021/jp070586c.
18. Perepelkin K.E., Machalaba N.N., Kvaratskheliya V.A. // Fibre Chemistry. 2001. V. 33, № 2. P. 22-29. DOI: 10.1023/A:1019256718605.
19. Machalaba N.N., Perepelkin K.E. // J. Ind. Text. 2002. V. 31. № 3. P. 189-204. DOI: 10.1101/152808302026484.
20. Matsuda H., Asakura T., Nakagawa Y. // Macromolecules. 2003. V. 36. № 16. P. 6160-6165. DOI: 10.1021/ma034670b.
21. Jassal M., Ghosh S. // Indian J. Fibre Text. Res. 2002. V. 27. P. 209-306.
22. Breda E.J. // Anal. Chem. 1958. V. 30. № 12. P. 2020-2022. DOI: 10.1021/ac60144a045.
23. Munson J.W. // J. Pharm. Sci. 1974. V. 63. № 2. P. 252-257. DOI: 10.1002/jps.2600630216.
24. Smirnov P.V., Podol’skaya T.I., Kvasha N.M., Poponova R.V., Bogomolov V.I., Kuz’min N.I. // Fibre Chem. 1989. V. 20. № 5. P. 354-358. DOI: 10.1007/BF00545408.
25. Технические условия 6-01-1146-88, 1989.
26. Технические условия 6-01-809-73, 1973.
27. Berti W.R., Wolstenholme B.W., Kozlowski J.J., Sobocinski R.L., Freerksen R.W. // Environ. Sci. Technol. 2006. V. 40. № 20. P. 6330-6335. DOI: 10.1021/es060954a.
28. Hosangadi B.D., Dave R.H. // Tetrahedron Lett. 1996. V. 37. № 35. P. 6375-6378. DOI: 10.1016/0040-4039(96)01351-2.
29. Sun H., Yang Y., Li H., Zhang J., Sun N. // J. Agric. Food Chem. 2012. V. 60. № 22. P. 5532-5539. DOI: 10.1021/jf3009603.
30. Wu J.C.G. // J. Environ. Sci. Heal. Part A Environ. Sci. Eng. Toxicol. 1991. V. 26, № 8. P. 1363-1385. DOI: 10.1080/10934529109375703.
31. Whitnack G.C., St. Clair Gantz E. // Anal. Chem. 1953. V. 25. № 4. P. 553-556. DOI: 10.1021/ac60076a005.
32. Alpers T., Muesmann T.W.T., Temme O., Christoffers J. // European J. Org. Chem. 2017. V. 2017. № 3. P. 609-617. DOI:10.1002/ejoc.201601298.
33. McMaster L., Ahmann F.F. // J. Am. Chem. Soc. 1928. V. 50. № 1. P. 145-149. DOI: 10.1021/ja01388a018.
34. US Patent 6770783, 2004.
35. Ruggli P., Gassenmeier E. // Helv. Chim. Acta. 1939. V. 22. № 1. P. 496-511. DOI: 10.1002/hlca.19390220162.
36. DE Patent 642519, 1937.
37. Rose N.C. // J. Chem. Educ. 1967. V. 44. № 5. P. 283. DOI: 10.1021/ed044p283.
38. Kim K.-S., Kim J.-H., Seo G. // Chem. Commun. 2003. V. 3. № 3. P. 372-373. DOI: 10.1039/b210258g.
39. Kim H.-J., Moon D., Soo Lah M., Hong J.-I. // Tetrahedron Lett. 2003. V. 44. № 9. P. 1887-1890. DOI: 10.1016/S0040-4039(03)00073-X.
40. Trifonov A.L., Levin V.V., Struchkova M.I., Dilman A.D. // Org. Lett. 2017. V. 19. № 19. P. 5304-5307. DOI: 10.1021/acs.orglett.7b02601.
41. US Patent 3734959, 1973.
42. US Patent 3449416, 1969.
43. US Patent 3950414, 1976.
44. US Patent 4528146, 1985.
45. Green M., Thorp D.M. // J. Chem. Soc. B Phys. Org. 1967. P. 1067. DOI: 10.1039/j29670001067.
46. Vilsmeier A., Haack A. // Berichte der Dtsch. Chem. Gesellschaft. 1927. V. 60. № 1. P. 119—122. DOI: 10.1002/cber.19270600118.
47. Arrieta A., Aizpurua J.M., Palomo C. // Tetrahedron Lett. 1984. V. 25. № 31. P. 3365-3368. DOI: 10.1016/S0040-4039(01)81386-1.
48. Li J.-J. // Name Reactions. 2007. P. 605-605. DOI: 10.1007/3-540-30031-7_273.
49. GB Patent 1368973, 1974.
50. Quesnel J.S., Arndtsen B.A. // J. Am. Chem. Soc. 2013. V. 135. № 45. P. 16841-16844. DOI: 10.1021/ja4098093.
51. Fabri J., Graeser U., Simo T.A. // Ullmann’s Encyclopedia of Industrial Chemistry., 2000. V. 39. P. 643-663. DOI:10.1002/14356007.a28_433.
52. Yang Y., Bai P., Guo X. // Ind. Eng. Chem. Res. 2017. V. 56. № 50. P. 14725-14753. DOI: 10.1021/acs.iecr.7b03127.
53. Sheehan R.J. // Ullmann’s Encyclopedia of Industrial Chemistry. 2011. V. 36. P. 17-28. DOI: 10.1002/14356007.a26_193.pub2.
54. Adamian V.A., Gong W.H. // Liquid Phase Aerobic Oxidation Catalysis: Industrial Applications and Academic Perspectives. 2016. № II. P. 41-66. DOI: 10.1002/9783527690121.ch4.
55. Cotarca L., Eckert H. // Phosgenations - A Handbook. 2005. № 70. P. 325-431. DOI: 10.1002/3527602623.ch4d.
56. US Patent 4129594, 1978.
57. US Patent 4308216, 1981.
58. US Patent 4307039, 1981.
59. US Patent 4393009, 1983.
60. Hauser C.F., Theiling L.F. // J. Org. Chem. 1974. V. 39. № 8. P. 1134-1136. DOI: 10.1021/jo00922a026.
61. Babad H., Zeiler A.G. // Chem. Rev. 1973. V. 73. № 1. P. 75-91. DOI: 10.1021/cr60281a005.
62. Beltrame P., Carrà S. // Tetrahedron Lett. 1965. V. 6. № 44. P. 3909-3915. DOI: 10.1021/j100876a030.
63. Beltrame P., Carrà S., Mori S. // J. Phys. Chem. 1966. V. 70. № 4. P. 1150-1158. DOI: 10.1021/j100876a030.
64. Hill M.E. // J. Org. Chem. 1960. V. 25. № 7. P. 1115-1118. DOI:10.1021/jo01077a012.
65. CN Patent 104230704, 2014.
66. Успенская Н.Н., Моцарев Г.В., Коростелева В.М. // Хим. пром-сть. 1974. № 2. С. 32—33.
67. Маличенко Б.Ф. // Журн. прикл. хим. 1967. Т. 6. С. 1385—1386.
68. Gillespie R.J., Robinson E.A. // J. Am. Chem. Soc. 1965. V. 87. № 11. P. 2428-2434. DOI: 10.1021/ja01089a022.
69. US Patent 3835187, 1974.
70. Успенская Н.Н., Максичева А.И., Моцарев Г.В. // Журн. орг. хим. 1970. Т. 6. № 5. С. 1027—1032.
71. US Patent 3681451, 1972.
72. Rondestvedt C.S. // J. Org. Chem. 1976. V. 41. № 22. P. 3577-3579. DOI: 10.1021/jo00884a019. DOI: 10.1021/jo00884a019.
73. Rondestvedt C.S. // J. Org. Chem. 1976. V. 41. № 22. P. 3569-3574. DOI: 10.1021/jo00884a017.
74. US Patent 2856425, 1958.
75. Schreyer R.C. // J. Am. Chem. Soc. 1958. V. 80. № 13. P. 3483-3484. DOI: 10.1021/ja01546a076.
76. US Patent 3668247, 1972.
77. US Patent 3681454, 1972.
78. Rondestvedt C.S. // J. Org. Chem. 1976. V. 41. № 22. P. 3574-3577. DOI: 10.1021/jo00884a018.
79. Nakano T., Ohkawa K., Matsumoto H., Nagai Y. // J. Chem. Soc. Chem. Commun. 1977. № 22. P. 808-809. DOI: 10.1039/c3977000808b.
Review
For citations:
Yushchenko D.Yu., Zhizina Е.G., Pai Z.P. Methods for the synthesis of dichloroanhydrides of phthalic acids. Kataliz v promyshlennosti. 2019;19(4):289-298. (In Russ.) https://doi.org/10.18412/1816-0387-2019-4-289-298