Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Synthesis of Methanol and Dimethyl Ether from CO2 and H2 Under Flow-Circulation Conditions

https://doi.org/10.18412/1816-0387-2019-6-436-444

Abstract

In the context of utilization of carbon dioxide emissions, a study of the CO2 conversion to methanol and dimethyl ether (DME) under flowcirculation conditions, when a part of converted gas returns to the reactor, was carried out. Experimental data on the synthesis of methanol (commercial catalyst Megamax 507) and direct synthesis of DME (Megamax 507/commercial zeolite ZVM, weight ratio 1/1) are reported. In the methanol synthesis from syngas, vol.%: H2 – 76.6, CO2 – 19.8, N2 – 3.6 performed at 240–260 °C and pressure 5.3 MPa, a high conversion of CO2 was reached: 84–99.6% at a low selectivity of the side reaction (CO synthesis, not higher than 4.7 %). The maximum specific yield of methanol at 260 °C was 1.24 kg(kgcat·h)–1. Special-purpose experiments demonstrated that the methanol synthesis is accompanied by a small heating (up to 10 °C) at the catalyst bed inlet, which testifies to polytropicity of the reactor. In the synthesis of DME, the DME yield referred to bifunctional catalyst was within 0.16–0.33 kg(kgcat·h)–1 depending on the conditions. Therewith, the conversion of methanol to DME was not lower than 42 %, the conversion of CO2 was within 79–96 %, and the DME synthesis proceeded under nearly isothermal conditions.

About the Authors

G. I. Lin
A.V. Topchiev Institute of Petrochemical Synthesis RAS, Moscow
Russian Federation


P. V. Samokhin
A.V. Topchiev Institute of Petrochemical Synthesis RAS, Moscow
Russian Federation


M. A. Kipnis
A.V. Topchiev Institute of Petrochemical Synthesis RAS, Moscow
Russian Federation


References

1. Cuéllar-Franca R.M., Azapagic A. // J. CO2 Util. 2015. V. 9. Р. 82.

2. Quadrelli E.A., Centi G., Duplan J.L., Perathoner S. // Chem-SusChem. 2011. V. 4. P. 9.

3. Klankermayer J., Wesselbaum S., Beydoun K., Leitner W. // Angew. Chem. Int. Ed. 2016. V. 55. P. 7296.

4. Schakel W., Oreggioni G., Singh B., Strømman A., Ramírez A. // J. CO2 Util. 2016. V. 16. P. 138.

5. Transformation and Utilization of Carbon Dioxide. Bhanage B.M., Arai M. (Eds.) Springer Berlin Heidelberg. 2014.

6. Saravanan K., Ham H., Tsubaki N., Bae J.W. // Appl. Catal. B: Env. 2017. V. 217. Р. 494.

7. Olah G.A., Goeppert A., Prakash G.K.S. // J. Org. Chem. 2009. V. 74. P. 487.

8. Kunkes E., Behrens M. in book: Chemical Energy Storage. Ed. by R. Schlögl. De Gruyter Textbook. 2012. P. 413.

9. Doss B., Ramos C., Atkins S. // Energy Fuels. 2009. V. 23. P. 4647.

10. Sahibzada M., Metcalfe I. S., Chadwick D. // J. Catal. 1998. V. 174. P. 111.

11. Pontzen F., Liebner W., Gronemann V., Rothaemel M., Ahlers B. // Catal. Today. 2011. V. 171. P. 242.

12. Toyir J., Miloua R., Elkadri N.E., Nawdali M., Toufik H., Miloua F., Saito M. // Phys. Procedia 2009. V. 2. P. 1075.

13. Xin An, Yi-Zan Zuo, Qiang Zhang, De-Zheng Wang, Jin-Fu Wang // Ind. Eng. Chem. Res. 2008. V. 47. Р. 6547.

14. Methanol Science and Engineering. Eds. A. Basile, F. Dalena, Elsevier B.V. 2018.

15. Busca G. Heterogeneous catalytic materials. Solid state chemistry, surface chemistry and catalytic behavior, ch. 9. 2014. Elsevier B.V. 463 р.

16. Кипнис М.А., Белостоцкий И.А., Волнина Э.А., Лин Г.И., Маршев И.И. // Кинетика и катализ. 2018. Т. 59. С. 715.

17. Кипнис M.A. // Катализ в промышленности. 2017. Т. 17. С. 266.

18. Кипнис М.A., Белостоцкий И.А., Волнина Э.А., Лин Г.И. // Катализ в промышленности. 2018 Т. 18. С. 12.


Review

For citations:


Lin G.I., Samokhin P.V., Kipnis M.A. Synthesis of Methanol and Dimethyl Ether from CO2 and H2 Under Flow-Circulation Conditions. Kataliz v promyshlennosti. 2019;19(6):436-444. (In Russ.) https://doi.org/10.18412/1816-0387-2019-6-436-444

Views: 4403


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)