

Mesoporous Zirconium-Niobium Mixed Oxide (Zr6Nb2O17): an Effective Catalyst Towards Bromination of Phenol Red Reaction
https://doi.org/10.18412/1816-0387-2019-6-445-454
Abstract
In search for the improved catalytic efficacy, considerable attention has been focused on mixed metal oxides in the last decade. The present study reports catalytic activity of mesoporous mixed metal oxide, Zr6Nb2O17 for the first time. In this study, the mesoporous Zr6Nb2O17 has been synthesized through a soft template based wet chemical approach. The mesoporous Zr6Nb2O17 is realized after the removal of surfactant through calcination at 500 °C, and preserves its mesoporosity after crystallization by heat-treatment at 550 °C. The synthesized oxide exhibits surface area as high as 221 m2/g and pore size of 3.3 nm with narrow pore size distribution. The synthesized mesoporous Zr6Nb2O17 shows significant catalytic activity for the bromination of phenol red. Careful structural characterizations and catalytic activity studies of the mesoporous Zr6Nb2O17 are documented in this report.
About the Authors
Arpita SarkarIndia
Soumya Kanti Biswas
India
References
1. Chen B., Li F., Yuan G. // RSC Adv. 2017. Vol. 7. P. 21145—21152.
2. Tejuca L.G., Fierro J.L.G., Tascón J.M.D. // Adv. Catal. 1989. Vol. 36. P. 237—328.
3. Fierro J.L.G. // Catal. Today. 1990. Vol. 8, № 2. P. 153—174.
4. Klimova T., Rojas M.L., Castillo P., Cuevas R., Ramirez J. // Micropor. Mesopor. Mater. 1998. Vol. 20. P. 293—306.
5. Fernández-García M., Martínez-Arias A., Hanson J.C., Rodriguez J.A. // Chem. Rev. 2004. Vol. 104, № 9. P. 4063—4104 (references therein).
6. Zakrzewska K. // Thin Solid Films. 2001. Vol. 391, № 2. P. 229—238.
7. Triwahyono S., Yamada T., Hattori H. // Appl. Catal. A: General. 2003. Vol. 242, № 1. P. 101—109.
8. Denise B., Sneeden R.P.A. // Appl. Catal. 1986. Vol. 28. P. 235—239.
9. Kanade K.G., Baeg J.-O., Kale B.B., Lee S.M., Moon S.-J., Kong K. // Int. J. Hydrogen Energy. 2007. Vol. 32, № 18. P. 4678—4684.
10. Kantcheva M., Budunoğlu H., Samarskaya O. // Catal. Commun. 2008. Vol. 9, № 5. P. 874—879.
11. Cayirtepe I., Naydenov A., Ivanov G., Kantcheva M. // Catal. Lett. 2009. Vol. 132, № 3/4. P. 438—449.
12. Fütterer K., Schmid S., Thompson J.G., Withers R.L., Ishizawa N., Kishimoto S. // Acta Crystallogr. B. 1995. Vol. 51, pt. 5. P. 688—697.
13. Kominami H., Inoue M., Inui T. // Catal. Today. 1993. Vol. 16, № 3/4. P. 309—317.
14. Lu D., Lee B., Kondo J.N., Domen K. // Micropor. Mesopor. Mater. 2004. Vol. 75, № 3. P. 203—208.
15. Biswas S.K., Pramanik P. // Sens. Actuators B: Chem. 2008. Vol. 133, № 2. P. 449—455.
16. Sarkar A., Biswas S.K., Pramanik P. // J. Mater. Chem. 2010. Vol. 20, № 21. P. 4417—4424.
17. Sarkar A., Pramanik P. // Micropor. Mesopor. Mater. 2009. Vol. 117, № 3. P. 580—585.
18. Sarkar A., Pramanik S., Achariya A., Pramanik P. // Micropor. Mesopor. Mater. 2008. Vol. 115, № 3. P. 426—431.
19. Biswas S.K., Gnanasekaran T., Ghorai T.K., Pramanik P. // J. Electrochem. Soc. 2008. Vol. 155, № 1. P. J26—J31.
20. Teng M., Luo L., Yang X. // Micropor. Mesopor. Mater. 2009. Vol. 119. P. 158—164.
21. Sels B.F., De Vos D.E., Jacobs P.A. // J. Am. Chem. Soc. 2001. Vol. 123, № 34. P. 8350—8359.
22. Chen A.-J., Wong S.-T., Hwang C.-C., Mou C.-Y. // ACS Catal. 2011. Vol. 1, № 7. P. 786—793.
23. Vuurman M.A., Stufkens D.J., Oskam A., Wachs I.E. // J. Mol. Catal. 1992. Vol. 76. P. 263—285.
24. Walker J.V., Morey M., Carlsson H., Davidson A., Stucky G.D., Butler A. // J. Am. Chem. Soc. 1997. Vol. 119, № 29. P. 6921—6922.
25. Clague M.J., Butler A. // J. Am. Chem. Soc. 1995. Vol. 117, № 12. P. 3475—3484.
26. Morey M.S., Bryan J.D., Schwarz S., Stucky G.D. // Chem. Mater. 2000. Vol. 12, № 11. P. 3435—3444.
27. Sels B., De Vos D., Buntinx M., Pierard F., Kirsch-De Mesmaeker A., Jacobs P. // Nature. 1999. Vol. 400. P. 855—857.
28. Sels B.F., De Vos D.E., Buntinx M., Jacobs P.A. // J. Catal. 2003. Vol. 216. P. 288—297.
29. Wong S.T., Hwang, C.C., Mou C.Y. // Appl. Catal. B: Environmental. 2006. Vol. 63, № 1/2. P. 1—8.
30. Chen A.J., Chen X.R., Mou C.Y. // J. Chin. Chem. Soc. 2010. Vol. 57. P. 820—828.
31. Raja R., Ratnasamy P. // J. Catal. 1997. Vol. 170, № 2. P. 244—253.
32. Yang P., Zhao D., Margolese D.I., Chmelka B.F., Stucky G.D. // Chem. Mater. 1999. Vol. 11, № 10. P. 2813—2826.
33. Lee B., Yamashita T., Lu D., Kondo J.N., Domen K. // Chem. Mater. 2002. Vol. 14, № 2. P. 867—875.
34. Gregg S.J., Sing K.S.W. Adsorption, surface area and porosity. 2nd ed. London [etc.] : Academic Press, 1982.
35. Lee B. et al. // Chem. Mater. 2002. Vol. 14. P. 867—875.
36. Lu D., Lee B., Kondo J.N., Domen K. // Micropor. Mesopor. Mater. 2004. Vol. 75, № 3. P. 203—208.
37. Resini C., Montanari T., Nappi L., Bagnasco G., Turco M., Busca G., Bregani F., Notaro M., Rocchini G. // J. Catal. 2003. Vol. 214, № 2. P. 179—190.
38. Selli E., Forni L. // Micropor. Mesopor. Mater. 1999. Vol. 31, № 1/2. P. 129—140.
39. Bayot D., Devillers M. // Coord. Chem. Rev. 2006. Vol. 250, № 19/20. P. 2610—2626.
Supplementary files
![]() |
1. Supplementary Materials | |
Subject | ||
Type | Other | |
Download
(233KB)
|
Indexing metadata ▾ |
Review
For citations:
Sarkar A., Biswas S.K. Mesoporous Zirconium-Niobium Mixed Oxide (Zr6Nb2O17): an Effective Catalyst Towards Bromination of Phenol Red Reaction. Kataliz v promyshlennosti. 2019;19(6):445-454. (In Russ.) https://doi.org/10.18412/1816-0387-2019-6-445-454