

Preparation of Nutrient Media from Lignocellulose: Compositional Optimization of Multienxyme Cocktail
https://doi.org/10.18412/1816-0387-2019-6-482-489
Abstract
Lignocellulose is a global inexhaustible resource for obtaining various products of biotechnological synthesis. The enhanced efficiency of glucose extraction from lignocellulose will increase the yield of such products, thus decreasing their cost. The goal of the study was to optimize the composition of multienzyme cocktail (MEC) of commercial enzymatic preparations (EP) Cellolux-A, Ultraflo Core and Bruzyme BGX for efficient enzymatic hydrolysis of the substrate – oat husk treated with 4 wt.% nitric acid under the pilot-plant conditions. Mathematical processing of experimental data obtained by implementation of the simplex-centroid design of experiments revealed the optimal EP ratio equal to 1/4 : 3/4 : 0 (Cellolux-A – 18 mg/g substrate, Ultraflo Core – 55 mg/g substrate). The optimized composition of MEC allows increasing the reducing substances yield by a factor of 1.95. The equation of experimental statistical model was used to investigate the hydrolysis kinetics at different concentrations of MEC. It was shown that a threefold increase in the MEC concentration increases the reducing substances yield versus the substrate weight and the glucose yield versus the cellulose weight in the substrate by 13 %. The hydrolysate obtained using the optimized MEC served as a nutrient medium for biosynthesis of a valuable bioengineering product – bacterial nanocellulose, the yield of which constituted 6.1 % of the hydrolysate glucose.
About the Authors
G. F. MironovaRussian Federation
E. A. Skiba
Russian Federation
A. A. Kukhlenko
Russian Federation
References
1. Schmid R.D. Taschenatlas der Biotechnologie und Gentechnik. John Wiley & Sons, 2016. 414 p.
2. Arevalo-Gallegos A., Ahmad Z., Asgher M., Parra-Saldivar R., Iqbal H.M.N. // Int. J. Biol. Macromol. 2017. № 99. P. 308-318. doi:10.1016/j.ijbiomac.2017.02.097.
3. Liu C.G., Xiao Y., Xia X.X., Zhao X.Q., Peng L., Srinophakun P., Bai F.W. // Biotechnol. Adv. 2019. V. 37. №3. P. 491-504. DOI:10.1016/j.biotechadv.2019.03.002.
4. Ong K.L., Li C., Li X., Zhang Y., Xu J., Lin C.S.K. // Biochem. Eng. J. 2019. V. 148. P. 108-115. doi:10.1016/j.bej.2019.05.004.
5. Cubas-Cano E., González-Fernández C., Ballesteros M., Tomás-Pejó E. // Biofuel. Bioprod. Bior. 2018. V. 12. № 2. P. 290-303. doi: 10.1002/bbb.1852.
6. Raza Z.A., Abid S., Banat I.M. // Int. Biodeter. Biodegr. 2018. № 126. P. 45-56. doi: 10.1016/j.ibiod.2017.10.001.
7. Cheng Z., Yang R., Liu X., Liu X., Chen H. // Biores. Tech. 2017. № 234. P. 8-14. doi: 10.1016/j.biortech.2017.02.131.
8. Tian-Yuan Z., Yin-Hu W., Jing-Ha W., Xiao-Xiong W., Deantes-Espinosa V. M., Guo-Hua D., XinT. , Hong-Ying H. // Chem. Eng. J. 2019. V. 367. P. 37-44. doi: 10.1016/j.cej.2019.02.049.
9. Raud M., Kikas T., Sippula O., Shurpali N.J. // Renew. Sust. Energ. Rev. 2019. V. 111. P. 44-56. doi: 10.1016/j.rser.2019.05.020.
10. United States Department of Agriculture, Foreign Agricultural Service // World Agricultural Production [Электронный ресурс]. URL: https://apps.fas.usda.gov/psdonline/circulars/production.pdf
11. Skiba E.A., Baibakova O.V., Budaeva V.V., Pavlov I.N., Vasilishin M.S., Makarova E.I., Sakovich G.V., Ovchinnikova E.V., Banzaraktsaeva S.P., Vernikovskaya N.V., Chumachenko V.A. // Chem. Eng. J. 2017. V. 329. P. 178-186. doi: 10.1016/j.cej.2017.05.182.
12. Григорьева О.Н., Харина М.В. // Вестник технологического университета. 2016. Т. 19. № 10 .С. 128—132.
13. Hu F., Ragauskas A. // Bioenerg. Res. 2012. V. 5. № 4. P. 1043-1066. doi: 10.1007/s12155-012-9208-0.
14. Zeng Y., Himmel M.E., Ding S.-Y. // Biotechnol. Biofuel. 2017. V. 10. № 1. doi: 10.1186/s13068-017-0953-3.
15. Bychkov A., Podgorbunskikh E., Bychkova E., Lomovsky O. // Biotechnol. Bioeng. 2019. V. 116. № 5. P. 1231-1244. doi: 10.1002/bit.26925.
16. Skiba E.A., Budaeva V.V., Baibakova O.V., Zolotukhin V.N., Sakovich G.V. // Biochem. Eng. J. 2017. V. 126. P. 118-125. doi: 10.1016/j.bej.2016.09.003.
17. Agrawal R., Semwal S., Kumar R., Mathur A., Gupta R.P., Tuli D.K. Satlewal A. // Front. Energy Res. 2018. V. 6. P. 1-11. doi: 10.3389/fenrg.2018.00122.
18. Dotsenko A., Gusakov A., Rozhkova A., Sinitsyna O., Shashkov I., Sinitsyn A. // 3 Biotech. 2018, V. 8. № 9. P. 1-8. doi: 10.1007/s13205-018-1419-4.
19. Caro I., Blandino A., Díaz A.B., Marzo C. // Biofuel. Bioprod. Bior. 2019. V. 13. № 4. P. 1044-1056. doi: 10.1002/bbb.1997.
20. Makarova E.I., Budaeva V.V., Kukhlenko A.A., Orlov S.E. // 3 Biotech. 2017. V. 7. №5. P. 1-9. doi: 10.1007/s13205-017-0964-6.
21. Gama M., Dourado F., Bielecki S. (Eds.). Bacterial nanocellulose: from biotechnology to bio-economy. Elsevier, 2016. 260 p.
22. De Souza S.S., Berti F.V., de Oliveira K.P.V., Pittella C.Q.P., de Castro J.V., Pelissari C., Rambo C.R., Porto L.M. // Cellulose. 2019. V. 26. № 3. P. 1641-1655. doi: 10.1007/s10570-018-2178-4.
23. Kurschner K., Hoffer A. // Fresenius J. Anal. Chem. 1993. V. 92. № 3. P. 145-154.
24. Оболенская А.В., Ельницкая З.П., Леонович А.А. Лабораторные работы по химии древесины и целлюлозы. М.: Экология, 1991. 320 с.
25. TAPPI method T222 om-83. Acid-insoluble lignin in wood and pulp. In: Test methods 1998—1999. Atlanta. TAPPI Press, 1999.
26. TAPPI method T211 om-85. Ash in wood, pulp, paper, and paperboard. In: Test methods. Atlanta. TAPPI Press, 1985.
27. Gladysheva E.K., Skiba E.A., Zolotukhin V.N., Sakovich G.V. // Appl. Biochem. Microbiol. 2018. V. 54, № 2. P. 179-187. doi: 10.1134/S0003683818020035.
28. Miller G.L. // Anal. Chem. 1959. V. 31. № 3. P. 426-428. doi: 10. 1021/ac60147a030.
29. Зедгенидзе И.Г. Планирование эксперимента для исследования многокомпонентных систем. М.: Наука, 1976. 390 с.
30. Варфоломеев С.Д. (ред.). Химия биомассы: биотоплива и биопластики. М.: Научный мир, 2017. 790 с.
31. Podgorbunskikh E.M., Bychkov A.L., Lomovsky O.I. // Polymers. 2019. V. 11. P. 1-7. doi: 10.3390/polym11071201.
32. Макарова Е.И., Будаева В.В. // Известия вузов. Прикладная химия и биотехнология. 2017. Т. 7. № 4. С. 51—57. doi: 10.21285/2227-2925- 2017-7-4-51-57.
33. Xu C., Zhang J., Zhang Y., Guo Y., Xu H., Xu J., Wang Z. // Biores. Tech. 2019. V. 292. P. 1-7. doi: 10.1016/j.biortech.2019.121993.
34. Carreira P., Mendes J.A., Trovatti E., Serafim L.S., Freire C.S., Silvestre A.J., Neto C.P. // Biores. Tech. 2011. V. 102. P. 7354-7360. doi: 10.1016/j.biortech.2011.04.081.
35. Chen L., Hong F., Yang X.X., Han S.F. // Biores. Tech. 2013. V. 135. P. 464-468. doi: 10.1016/j.biortech.2012.10.029.
36. Гладышева Е.К., Скиба Е.А., Алешина Л.А. // Ползуновский вестник. 2016. № 4. Т. 1. С. 152—156.
Review
For citations:
Mironova G.F., Skiba E.A., Kukhlenko A.A. Preparation of Nutrient Media from Lignocellulose: Compositional Optimization of Multienxyme Cocktail. Kataliz v promyshlennosti. 2019;19(6):482-489. (In Russ.) https://doi.org/10.18412/1816-0387-2019-6-482-489