

Multicriteria Optimization of the Catalytic Reforming Reactor Unit Using the Genetic Algorithm
https://doi.org/10.18412/1816-0387-2019-6-465-473
Abstract
The study is devoted to multicriteria optimization of the operation of the reactor unit intended for reforming of oil fractions. The optimization is based on the earlier developed mathematical model, which can take into account changes in the temperature and molar consumption of the reaction mixture during chemical transformations, the composition of the feedstock being processed, and the circulation quality and ratio of the hydrogen-containing gas. The following criteria are used in such optimization: octane number, yield of the target product (reformate), content of the sum of aromatic hydrocarbons, and content of benzene. The optimization was implemented using Pareto approximation with the genetic algorithm. Temperatures at the reactor inlets served as the control parameters. As a result of optimization, the sum content of aromatic hydrocarbons decreases from 56 to 45 wt.%, and the octane number measured by the research method (RON) decreases from 92.7 to 90.7 points. The three-criteria optimization is also considered; it provides a decrease in the benzene content from 4 to 3.08 wt.% with a decrease in RON from 92.7 to 91.8 points. In both cases, the decrease in the octane number is admissible, taking into account the fulfilled requirements to the limiting content of benzene and aromatic hydrocarbons in the reformate.
About the Authors
R. Z. ZainullinRussian Federation
A. N. Zagoruiko
Russian Federation
K. F. Koledina
Russian Federation
I. M. Gubaidullin
Russian Federation
R. I. Faskhutdinova
Russian Federation
References
1. Яковлев А.А., Ахметов А.Ф., Павлова И.Н. // Электронный научный журнал Нефтегазовое дело. 2006. № 2. С. 32.
2. Кондрашев Д.О., Ахметов А.Ф. // Электронный научный журнал Нефтегазовое дело. 2006. № 2. С. 34.
3. Белый А.С. // Кинетика и катализ. 2005. No. 46(5). С. 728—737.
4. Островский Н.М. Кинетика дезактивации катализаторов. М.: Наука, 2001. 334 с.
5. Кравцов А.В., Иванчина Э.Д. Интеллектуальные системы в химической технологии и инженерном образовании. Новосибирск: Наука, 1996. 200 с.
6. Rahimpour M.R., Jafari M., Iranshahi D. Applied Energy. 109(2013) 79-93
7. Krane H.G., Groh A.B., Shulman B.L., Sinfelt J.H. 5th World Petroleum Congress. New York. USA. 1960. P. 39—53.
8. Жоров Ю.М, Панченков Г.М, Тираньян Ю.А. // Кинетика и катализ, 1965. Т. 6. No. 6. С. 1091—1097.
9. Шариков Ю.В., Петров П.А. // Химическое и нефтегазовое машиностроение. 2007. No. 10. С. 9—11.
10. Aguilar R., Anchyeta J. // Oil Gas J. July 25 1994a, 80—83.
11. Aguilar R., Anchyeta J. // Oil Gas J. January 31 1994b, 93—95.
12. Jenkins J.H., Stephens T.W. Hydrocarbon Processing, November 1980, 163—167.
13. Ramage M.P., Graziani K.P., Krambeck F.J. Chem. Eng. Sci. 1980, 35, 41—48.
14. Ramage M.P., Graziani K.R., Shipper P.H., Krambeck F.J., Choi B.C. Adv. Chem.Eng. 1987, 13, 193.
15. Marin G.B., Froment G.F. Reforming of C6 hydrocarbons on a Pt-Al2O3 catalyst.
16. Chem. Eng. Sci. 1982, 37, (5), 759—773.
17. Van Trimpont P.A., Marin G.B., Froment G.F. Ind. Eng. Chem. Res. 1988, 27, 1.
18. Coppens M.O., Froment G.F. Fractal aspects in the catalytic reforming of naphtha.
19. Chem. Eng. Sci. 1996, 51, 2283—2292.
20. Lee J.W., Ko K.Y., Jung Y.K., Lee K.S. // Comp. Chem. Eng., 1997, 21, S1105— S1110.
21. Дюсембаева А.А., Вершинин В.И. // Катализ в промышленности. 2016. Т. 16. No. 5. С. 24—29.
22. Belinskaya N., Ivanchina E., Ivashkina E., Silko G. // Procedia Chemistry. V. 10. 2014. P. 267—270
23. Zagoruiko A., Belyi A., Smolikov M., Noskov A. // Catalysis Today. 2014. 220—222. P. 168—177.
24. Hou W., Su H., Mu S., Chu J. // Chinese Journal of Chemical Engineering. 2007. No. 15. P. 75—80.
25. Stijepovic M.Z., Linke P., Kijevcanin M. // Energy and Fuels. 2010. 24. P. 1908—1916
26. Hou W., Su H., Hu Y., Chu J. // J. Chem. Eng. 2006. 14(5). P. 584—591.
27. Lid T., Skogestad S. // J. Process Control 18 (2008) 320-331.
28. Sepehr Sadighi, Reza Seif Mohaddecy, Ali Norouzian // Bulletin of Chemical Reaction Engineering & Catalysis. 2015. No 10, pp 210-220.
29. Zainullin R.Z., Koledina K.F., Akhmetov A.F., Gubaidullin I.M. // Kinetics and Catalysis. 2017. Vol. 58. No. 3. pp. 279—289.
30. Гейтс Б., Кетцир Дж., Шуйт Г. Химия каталитических процессов. М.: Мир, 1981. С. 551.
31. Taskar U., Riggs J.B. // AIChE Journal. 1997. № 43. P. 740.
32. Padmavathi G., Chaudhuri K.K. // Can. J Chem. Eng. 1997. № 75. P. 930.
33. Iranshahi D., Amiri H., Karimi M. // Energy Fuels. 2013. № 27. P. 4048.
34. Прямые и обратные задачи в химической кинетике. Под ред. В.И. Быкова. Новосибирск: Наука, 1993. 288 с.
35. Коледина К.Ф., Губайдуллин И.М. // Журнал физической химии. 2016. Т. 90. № 5. С. 671.
36. Gubaydullin I., Koledina K. and Sayfullina L. // Eng. J. 2014. Vol. 18. No. 1. pp. 13-24.
37. Nurislamova L., Gubaydullin I., Koledina K. and Safin R. // Reac. Kinet. Mech. Cat. 2016. Vol. 117. No. 1, pp. 1-14.
38. Deb K., Mohan M. and Mishra S. Evolutionary Multi-Criterion Optimization, Faro, Portugal, April 8-11, 2003, Springer, pp. 222-236.
Review
For citations:
Zainullin R.Z., Zagoruiko A.N., Koledina K.F., Gubaidullin I.M., Faskhutdinova R.I. Multicriteria Optimization of the Catalytic Reforming Reactor Unit Using the Genetic Algorithm. Kataliz v promyshlennosti. 2019;19(6):465-473. (In Russ.) https://doi.org/10.18412/1816-0387-2019-6-465-473