

The use of a microchannel reactor for optimizing the production of 1-alkyl-3-methylimidazolium chlorides
https://doi.org/10.18412/1816-0387-2020-1-40-49
Abstract
The possibility to use microchannel flow reactors for obtaining kinetic and technological parameters of the synthesis of 1-butyl-3-methylimidazolium chloride (BMIMCl) ionic liquid was demonstrated for the reaction of 1-methylimidazole (MIm) with 1-chlorobutane in the absence of solvents. BMIMCl was produced with high selectivity and specific output in a microchannel flow reactor at temperatures 120–180 °C and contact times 2-45 min at a pressure of 20 bar. The positive result is obtained due to the laminar profile of the flow and a uniform distribution of the reagents’ concentration over the microchannel cross-section. Investigation of the process kinetics in a microchannel flow reactor made it possible to reveal that the reaction moves to the diffusion resistance mode at a temperature above 150 °C. The kinetic data obtained for the BMIMCl synthesis were used to develop methods for the production of 1-ethyl-3-methylimidazolium and 1-hexyl-3-methylimidazolium chlorides (EMIMCl and HMIMCl, respectively) under the conditions of a microchannel flow reactor. The approach suggested in this paper is of interest for the development of flow and batch setups for a small-tonnage production of dialkylimidazolium, ammonium and pyridinium salts by quaternization of the corresponding alkyl chlorides and nitrogen-containing bases.
About the Authors
A. S. KlimenkoRussian Federation
D. V. Andreev
Russian Federation
S. A. Prikhod’ko
Russian Federation
A. G. Gribovsky
Russian Federation
L. L. Makarshin
Russian Federation
N. Yu. Adonin
Russian Federation
References
1. Elements of the Business of Chemistry, 2017.
2. Specialty chemicals market to reach $1.79 trillion by 2025. Focus on Catalysts 2017, 3.
3. Eisberg, N // Chemistry & Industry. 2014. Vol. 78. P. 42–44.
4. Green D.W., Perry R.H. Perry's Chemical Engineers' Handbook, 8th ed. McGraw-Hill, 2008, USA.
5. Bieringer T., Buchholz S., Kockmann N. // Chem. Eng. & Tech. 2013. Vol. 36. P. 900–910.
6. Keil F.J. // Reviews in Chemical Engineering. 2018. Vol. 34. P. 135–200.
7. Appel J., Colombo C., Datwyler U., Chen Y., Kerimoglu N. // Chimia. 2016. Vol. 70. P. 621–627.
8. Wesche M., Haberl M., Kohnke M., Scholl S. // Chemie Ingenieur Technik. 2015. Vol. 87. P. 203–215.
9. Ghaini A., Balon-Burger M., Bogdan A., Krtschil U., Lob P. // Chem. Eng. & Technology. 2015. Vol. 38. P. 33–43.
10. Kashid M.N., Renken A., Kiwi-Minsker L. Overview of Micro Reaction Engineering. Wiley-V C H Verlag Gmbh, 2015. Weinheim.
11. Krtschil U., Hofmann C., Lob P., Schutt C., Schorcht P., Streuber M. // Green Processing and Synthesis. 2013. Vol. 2. P. 451–463.
12. Porta R., Benaglia M., Puglisi A. // Organic Process Research & Development. 2016. Vol. 20. P. 2–25.
13. Reintjens R., de Vries A.H.M. // Chemical Engineering. 2016. Vol. 123. P. 40.
14. Suryawanshi P.L., Gumfekar S.P., Bhanvase B.A., Sonawane S.H., Pimplapure M.S. // Chemical Engineering Science. 2018.
15. Protasova L.N., Bulut M., Ormerod D., Buekenhoudt A., Berton J., Stevens C.V. // Organic Process Research & Development. 2013. Vol. 17. P. 760–791.
16. Lau W.N., Yeung K.L., Martin-Aranda R. // Microporous and Mesoporous Materials. 2008. Vol. 115. P. 156-163.
17. Wan Y.S.S., Gavriilidis A., Yeung K.L. // Chem. Eng. Res. and Design. 2003. Vol. 81. P. 753–759.
18. Horny C., Kiwi-Minsker L., Renken A. // Chem. Eng. J. 2004. Vol. 101. P. 3–9.
19. Karim A., Bravo J., Datye A. // Applied Cat. A: General. 2005. Vol. 282. P. 101–109.
20. Bellos G.D., Papayannakos N.G. // Catal. Today. 2003. Vol. 79-80. P. 349–355.
21. Andreev D.V., Sergeev E.E., Gribovskii A.G., Makarshin L.L., Prikhod'ko S.A., Adonin N.Yu., Pai Z.P., Parmon V.N. // Chem Eng. J. 2017. Vol. 330. P. 899–905.
22. Garcia-Verdugo E., Altava B., Burguete M.I., Lozano P., Luis S.V. // Green Chem. 2015. Vol. 17. P. 2693–2713.
23. Hallett J.P., Welton T. // Chemical Reviews. 2011. Vol. 111. P. 3508-3576.
24. Sawant A.D., Raut D.G., Darvatkar N.B., Salunkhe M.M. // Green Chem. Letters and Reviews. 2011. Vol. 4. P. 41–54.
25. Hu S.Z., Wang A.J., Lowe H., Li X.A., Wang Y., Li C.H., Yang D. // Chem. Eng. J. 2010. Vol. 162. P. 350–354.
26. Lowe H., Axinte R.D., Breuch D., Hofmann C., Petersen J.H., Pommersheim R., Wang A. // Chem. Eng. J. 2010. Vol. 163. P. 429–437.
27. Zhang J., Wang Y.J., Hu S.Z. // Asian J. Chem. 2014. Vol. 26. P. 2369–2372.
28. Bubalo M.C., Sabotin I., Rados I., Valentincic J., Bosiljkov T., Brncic M., Znidarsic-Plazl P. // Green Proc. Synthesis. 2013. Vol. 2. P. 579–590.
29. Seddon K.R.J. // J. Chem. Technology and Biotechnology. 1997. Vol. 68. 351–356.
30. Bowing A.G., Jess A. // Green Chem. 2005. Vol. 7. P. 230–235.
31. Burrell A.K., Sesto R.E.D., Baker S.N., McCleskey T.M., Baker G.A. // Green Chem. 2007. Vol. 9. P. 449–454.
32. Karkkainen J., Asikkala J., Laitenen R.S., Lajunen M.K. // Z. Naturforsch. 2004, Vol. 59. P. 763–770.
33. Zhou Z.H., Wang T., Xing H.B. // Ind. Eng. Chem. Res. 2006. Vol. 45. P. 525–529.
34. Verevkin S.P., Zaitsau D.H., Emel’yanenko V.N., Paulechka Y.U., Blokhin A.V., Bazyleva A.B., Kabo G.J. // J. Phys. Chem. B. 2011. Vol. 115. P. 4404–4411.
35. Stridh G., Sunner S. // J. Chem. Thermodynamics. 1975. Vol. 7. P. 161-168.
36. Shehatta I. // Thermochimica Acta. 1993. Vol. 213. P. 1–10.
37. Verevkin S.P., Zaitsau D.H., Emel’yanenko V.N., Ralys R.V., Yermalayeu A.V., Schick C. // Thermochimica Acta. 2013. Vol. 562. P. 84–95.
38. Raja L.L., Kee R.J., Deutschmann O., Warnatz J., and Schmidt L.D. // Catal. Today. 2000. Vol. 59. P. 47–60.
39. Scott F.H. Elements of Chemical Reaction Engineering, 5th Edition ed. 2016. Prentice Hall.
40. Bogdanov M.G., Svinyarov I. // Processes. 2017. Vol. 5. P.52-62
41. Firaha D.S., Paulechka Y.U. // Int. J. Chem. Kinetics. 2013. Vol. 45. P. 771–779.
42. Clough C., Griffith J., Sulaiman M.R., Corbett P., Welton T. // CHEMSPIDER SyntheticPages. Royal Society of Chemistry, p. 747.
43. Dupont J., Consorti C.S., Suarez P.A.Z., De Souza R.F., Fulmer S.L., Richardson D.P., Smith T.E., Wolff S. // Organic Syntheses. 2002. P. 236.
44. Chiappe C., Mezzetta A., Pomelli C.S., Puccini M., Seggiani M. // Org. Proc. Res. & Dev. 2016. Vol. 20. P. 2080–2084.
45. Gonzalez M.A., Ciszewski J.T. // Organic Process Research & Development. 2009. Vol. 13. P. 64–66.
Review
For citations:
Klimenko A.S., Andreev D.V., Prikhod’ko S.A., Gribovsky A.G., Makarshin L.L., Adonin N.Yu. The use of a microchannel reactor for optimizing the production of 1-alkyl-3-methylimidazolium chlorides. Kataliz v promyshlennosti. 2020;20(1):40-49. (In Russ.) https://doi.org/10.18412/1816-0387-2020-1-40-49