

Synthesis of ethylbenzene and isopropylbenzene hydroperoxides in a homogeneous catalytic system N-hydroxyphthalimide-Fe(III) and application of the solutions in epoxidation of olefins
https://doi.org/10.18412/1816-0387-2020-1-50-60
Abstract
The catalytic system N-hydroxyphthalimide – Fe(III) salt was used for the first time in aerobic oxidation of alkylbenzenes to the corresponding hydroperoxides. Microquantities of Fe(асас)3 or Fe(benz)3 were shown to enhance the efficiency of N-hydroxyphthalimide as the radical catalyst; as a result, hydroperoxidation of ethylbenzene and isopropylbenzene occurs at a temperature of 90–100 and 60 °С, respectively, instead of 150–120 °С, which is a typical temperature range of noncatalytic synthesis. When conversion of the substrates is 10–20 %, selectivity to hydroperoxides is retained at a level of 90–95 %. A further successful testing of the obtained solutions in the MoO3/SiO2-catalyzed epoxidation of olefins without a preliminary removal of the catalytic system components demonstrates that such low-temperature synthesis of hydroperoxides is promising as the initial step in epoxidation of olefins.
About the Authors
I. E. KarmadonovaV. N. Zudin
Russian Federation
N. I. Kuznetsova
Russian Federation
L. I. Kuznetsova
Russian Federation
B. S. Bal’zhinimaev
Russian Federation
References
1. Толстиков Г.А. Реакции гидроперекисного окисления. Изд. «Наука», 1976.200 c.
2. Sheldon R.A. // J. Molec. Catal. 1980. V. 7. P. 107–126.
3. US Patent 3351635, 1967.
4. Паушкин Я.М., Адельсон С.В., Вишнякова Т.П. Технология нефтехимического синтеза. Ч. 1. М.: Химия, 1973. 448 c.
5. Buijink J.K.F., Lange J.-P., Bos A.N.R., Horton A.D., Niele F.G.M. Propylene Epoxidation Via Shell's Smpo Process: 30 Years of Research and Operation (Book Chapter). Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis, 2008, 355 ‒ 371.
6. Toribio P.P., Gimeno-Gargallo A., Capel-Sanchez M.C., de Frutos M.P. // Appl. Catal. A Gen. 2009. V. 363. P. 32‒39.
7. Курганова Е.А. Селективное аэробное окисление алкиларенов до гидропероксидов в присутствии фталимидных катализаторов: Дис. … док. хим. наук: 05.17.04 / Е.А. Курганова. Ярославский гос. технич. ун-т. Ярославль, 2017. 318 c.
8. Carrara N., Badano J.M., Betti C., Lederhos C., Busto M., Vera C., Quiroga M. New Strategies for Obtaining Inorganic-Organic Composite Catalysts for Selective Hydrogenation. 2017. DOI: 10.5772/65959.
9. Sheldon R.A., Arends I.W.C.E. // J. Molec. Catal. A: Chem. 2006. V. 251. P. 200–214.
10. Цысковский В.К., Прокофьев Б.К., Пыльников В.И., Щеглова Ц.Н., Копалкина Л.Н. // Журн. прикл. химии. 1974. Т. 47. № 5. С. 1112‒1117.
11. Харлампиди Х.Э., Нуруллина Н.М., Батыршин Н.Н., Усманова Ю.Х. // Кинетика и катализ. 2018. Т. 59. № 3. С. 335‒339.
12. Ishii Y., Sakaguchi S. // Catal. Today. 2006. V. 117. P. 105 – 113.
13. Курганова Е.А., Кошель Г.Н. // Российский химич. журнал. 2014. Т. 58. № 3–4. С. 91‒102.
14. Курганова Е.А., Дахнави Э.М., Кошель Г.Н. // Нефтехимия. 2017. Т. 57. № 2. С. 204‒208.
15. Sapunov V.N., Kurganova E.A., Koshel G.N. // Int. J. Chem. Kin. 2018. V. 50. № 1. P. 3–14
16. Kuznetsova N.I., Kuznetsova L.I., Yakovina O.A., Karmadonova I.E., Bal’zhinimaev B.S. // Catalysis Letters. 2019. DOI: 10.1007/s 10562-019-02999-x.
17. Melone L., Punta C. // Beilstein J. Org. Chem. 2013. V. 9. P. 1296‒1310.
18. Arends I.W.C.E., Sasidharan M., Kühnle A., Duda M., Jost C., Sheldon R.A. // Tetrahedron. 2002. V. 58. P. 9055‒9061.
19. Orlińska B., Zawadiak J. // React. Kinet. Mech. Catal. 2013. V. 110. P. 15‒30.
20. Dobras G., Orlińska B. // Appl. Catal. A: Gen. 2018. V. 561. P. 59‒67.
21. Melone L., Franchi P., Lucarini M., Punta C. // Adv. Synth. Catal. 2013. V. 355. P. 3210‒3220.
22. Елиманова Г.Г., Батыршин Н.Н., Харлампиди Х.Э. // Кинетика и катализ. 2017. Т. 58. № 1. С. 49 ̶ 54.
23. Shen K., Liu X., Lu G., Miao Y., Guo Y., Wang Y., Guo Y. // J. Mol. Catal. A: Chemical. 2013. V. 373. P. 78 ̶ 84.
24. Farzaneh F., Zamanifar E., Williams C.D. // J. Molec. Catal. A: Chemical. 2004. V. 218. P. 203 ̶ 209.
25. Lin K., Pescarmona P.P., Houthoofd K., Liang D., Tendeloo G., Jacobs P.A. // J. Catal. 2009. V. 263. P. 75 ̶ 82.
26. Rekkab-Hammoumraoui I., Khaldi I., Choukchou-Braham A., Bachir R. // Res. J. Pharm. Biol. Chem. Sci. 2013. V. 4. P. 935 ̶ 946.
27. Khare S., Shrivastava S. // J. Molec. Catal. A: Chemical. 2004. V. 217. P. 51 ̶ 58.
28. Zhang X., Huang Y., Guo Y., Yuan X., Jiao F. // Microporous Mesoporous Mater. 2018. V. 262. P. 251–257.
29. Liu J., Fang S., Jian R., Wu F., Jian P. // Powder Technol. 2018. V. 329. P. 19–24.
30. Miao Y., Lu G., Liu X., Guo Y., Wang Y., Guo Y. // J. Ind. Eng. Chem. 2010. V. 16. P. 45 ̶ 50.
31. Li K.T., Lin C.C., Lin P.H. Propylene Epoxidation with Ethylbenzene Hydroperoxide Over Ti-Containing Catalysts Prepared by Chemical Vapor Deposition // Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis / Ed. S.T. Oyama. Elsevier Scince, 2008. P. 373 ̶ 386.
Review
For citations:
Karmadonova I.E., Zudin V.N., Kuznetsova N.I., Kuznetsova L.I., Bal’zhinimaev B.S. Synthesis of ethylbenzene and isopropylbenzene hydroperoxides in a homogeneous catalytic system N-hydroxyphthalimide-Fe(III) and application of the solutions in epoxidation of olefins. Kataliz v promyshlennosti. 2020;20(1):50-60. (In Russ.) https://doi.org/10.18412/1816-0387-2020-1-50-60