

Experimental and mathematical optimization of the peroxide delignification of larch in the presence of MnSO4 catalyst
https://doi.org/10.18412/1816-0387-2020-1-67-75
Abstract
Experimental and mathematical methods were used to obtain the optimal parameters of peroxide delignification of larch in the presence of MnSO4 catalyst, which provide a high yield of cellulose (44.3 wt.%) with a low content of residual lignin: temperature 100 °C, content of H2O2 6 wt.%, CH3COOH 25 wt.%, hydromodulus 15, and duration 3 h. The cellulose produced under optimal conditions had the following chemical composition: cellulose 92.7 wt.%, lignin 0.6 wt.%, and hemicellulose 5.7 wt.%. IR spectroscopy and XRD studies revealed that the structure of cellulose produced from larch is similar to that of industrial microcrystalline cellulose. The proposed catalytic method allows obtaining larch-derived cellulose with a minimum content of lignin under mild conditions in a single step with a high yield, crystallinity 0.8 and crystallite size 3.0 nm.
About the Authors
I. G. SudakovaRussian Federation
N. V. Garyntseva
Russian Federation
A. I. Chudina
Russian Federation
B. N. Kuznetsov
Russian Federation
References
1. Raud M., Kikas T., Sippula O., Shurpali N.J. // Renewable and Sustainable Energy Reviews. 2019.111, р. 44-56.
2. Zhang K., Pei Z., Wang D. // Bioresource Technology. 2016, 199, p. 21–33.
3. Brinchi L., Cotana F., Fortunati E., Kenny J.M. // Carbohydrate Polymers.2013. 94,p. 154-169.
4. Li X., XuR.,YangJ. et al. // Industrial Crops and Products. 2019. 130. p. 184-197.
5. Brosse N., Hage R.El, Sannigrahi P., Ragauskas A. // Cellul. Chem. Technol. 2010.V. 44 № 1-3.p. 71-78.
6. Oliet M., Garcıa J., Rodrıguez F., Gilarrranz M. // Chem. Eng. J. 2002.V. 87. № 2.p.157–162.
7. Pan X., Sano Y. // Bioresour. Technol. 2005.V. 96. № 11. p. 1256–1263.
8. Abad S., Santos V., Parajó J. // Holzforschung.2000. V. 54. № 5. p. 544–552.
9. Argyropoulos D.S. Oxidative Delignification Chemistry: Fundamentals and Catalysis. American Chemical Society (Distributed by Oxford University Press): Washington, DC. 2001. 536 p. doi.org/10.1021/ja015273o.
10. Suchy M., Argyropoulos D.S. Oxidative Delignification Chemistry. American Chemical Society (Distributed by Oxford University Press): Washington, DC. 2001. Chapter 1. p. 2-43. DOI:10.1021/bk-2001-0785.ch001.
11. Collinson S.R., Thielemans W. // Coordination Chemistry Reviews. 2010. V. 254. p. 1854–1870.
12. Ramadoss G., Muthukumar K. // UltrasonicsSonochemistry.2016. V. 28. p. 207–217.
13. Ruoshui Ma, Yan Xu, Xiao Zhang // ChemSusChemReviews. 2015. V. 8. № 1. 24 – 51.doi.org/10.1002/cssc.201402503.
14. Кузнецов Б.Н., Судакова И.Г., Яценкова О.В., Гарынцева Н.В., Ратабоул Ф., Дьякович Л. // Катализ в промышленности. 2018. Т. 18. № 3. C. 80–88.
15. Lucas M., Hanson S.K., Wagner G.L. et al. // Bioresource Technology.2012. V. 119. p. 174–180.
16. Ramadoss G., Muthukumar K. // Chemical Engineering Journal. 2015. V. 260. p. 178–187.
17. Tappi standard: Acid-insoluble lignin in wood and pulp. 1998. Standard T222 Om-98.Technical association of the pulp and paper industry, Atlanta, p 5.
18. Sjoöstroöm E., Aleґn R. Analytical Methods in Wood Chemistry. Pulping and Papermaking. Springer-Verlag, Berlin. 1999.
19. ASTM D1795 (2013) Standard Test method for intrinsic viscosity of cellulose. ASTM International, West Conshohocken, PA, p. 6.
20. Park S., Baker J.O., Himmel M.E. et al. // Biotechnology and Biofuels. 2010. V. 3. p. 10. doi.org/10.1186/1754-6834-3-10.
21. Thakur V.K., Thakur M.K. Handbook of Sustainable Polymers: Structure and Chemistry. Taylor&FrancisGroup. LLC. 2016. 923 p.
22. Непенин Ю.Н. Технология целлюлозы. Производство сульфатной целлюлозы. М.: Лесная промышленность, 1990. 600 с.
23. Kuznetsov B.N., Sudakova I.G., Garyntseva N.V. et. al. // Wood Science and Technology. 2018. V. 52. Is. 5. p. 1377-1394.
24. Пен Р.З. Планирование эксперимента в Statgraphics. Красноярск: СибГТУ-Кларетианум, 2003. 246 с.
25. Patil D.S., Chavan S.M., Oubagaranadin J.U.K. // J. Environ. Chem. Eng. 2016. V. 4. № 1. p. 468-487. doi.org/10.1016/j.jece.2015.11.028.
Review
For citations:
Sudakova I.G., Garyntseva N.V., Chudina A.I., Kuznetsov B.N. Experimental and mathematical optimization of the peroxide delignification of larch in the presence of MnSO4 catalyst. Kataliz v promyshlennosti. 2020;20(1):67-75. (In Russ.) https://doi.org/10.18412/1816-0387-2020-1-67-75