Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Catalytic Disproportionation of Chlorosilanes Using Imidazolium Ionic Liquids Deposited on Polymer Supports

https://doi.org/10.18412/1816-0387-2020-4-247-259

Abstract

Highly selective catalytic systems with porous polymer supports immobilized with ionic liquids, which contained acceptor and donor substituents as well as various anions, were developed. Their effect on activity of the catalysts in disproportionation of trichlorosilane was studied. The catalytic activity of systems based on N-methoxy-4-methylimidazole with different counterions was shown to decrease with the growth of chemical activity of the anions from iodine to fluorine.

About the Authors

A. V. Vorotyntsev
Nizhny Novgorod State Technical University n.a. R. E. Alekseev
Russian Federation


A. N. Markov
Nizhny Novgorod State Technical University n.a. R. E. Alekseev


A. N. Petukhov
Nizhny Novgorod State Technical University n.a. R. E. Alekseev
Russian Federation


V. I. Pryakhina
Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg
Russian Federation


M. E. Atlaskina
Nizhny Novgorod State Technical University n.a. R. E. Alekseev
Russian Federation


A. A. Atlaskin
Nizhny Novgorod State Technical University n.a. R. E. Alekseev
Russian Federation


A. A. Kapinos
Nizhny Novgorod State Technical University n.a. R. E. Alekseev
Russian Federation


V. M. Vorotyntsev
Nizhny Novgorod State Technical University n.a. R. E. Alekseev
Russian Federation


References

1. Stein R., Powers J. The energy problem. World Scientific Publishing Company, 2011. 188 p.

2. Рубан С.С. Нетрадиционные источники энергии. М.: Энергия, 2003. 134 c.

3. Dobrzański L. A., Drygała A., Januszka A. // J. Ach. Mat. Man. Eng. 2009. V. 37. № 2. P. 607-616.

4. Goetzberger A., Knobloch J., Voss B. Crystalline Silicon Solar Cells. Chichester: John Wiley & Sons. 1998. 233 p.

5. Murray J.P., Flamant G., Roos C.J. // J. Sol. 2006. P. 1349-1354.

6. Vorotyntsev A.V., Petukhov A.N., Vorotyntsev I.V., Sazanova T.S., Trubyanov M.M., Kopersak I.Y., Razov E.N., Vorotyntsev V.M. // Appl. Catal. 2016. V. 198. P. 334-346. DOI: 10.1016/j.apcatb.2016.06.017.

7. Kornev R.A., Vorotyntsev V.M., Petukhov A.N., Razov E.N., Mochalov L.A., Trubyanov M.M., Vorotyntsev A.V. // RSC Advances. 2016. V. 6, № 102, P. 99816-99824. DOI: 10.1039/c6ra21023f.

8. Mochalov L.A., Kornev R.A., Nezhdanov A.V., Mashin A.I., Lobanov A.S., Kostrov A.V., Vorotyntsev V.M., Vorotyntsev A.V. // Plasma chem. plasma p. 2016. V. 36, № 3. P. 849-856. DOI:10.1007/s11090-016-9703-8.

9. US Patent 8398946, 2008.

10. WO Patent 041036, 1994

11. Vorotyntsev A.V., Zelentsov S.V., Vorotyntsev V.M. // Russ. Chem. Bull. 2011. V. 60. P. 1531—1536. DOI: 10.1007/s11172-011-0228-2

12. US Patent 4704264, 1987.

13. US Patent 0113592, 2005.

14. Пат. РФ 2152902; опубл. 2000.

15. Huang X., Ding W.-J., Yan J.-M., Xia W.-D. // Ind. Eng. Chem. Res. 2013. V. 52. № 18. P. 6211-6220.

16. Vorotyntsev V.M., Drozdov P.N., Vorotyntsev I.V., Manokhina S.N., Knysh S.S. // Pet. Chem. 2013. V. 53, № 8. P. 627—631. DOI: 10.1134/S0965544113080161.

17. Devyatykh G.G., Panov G.I., Kharitonov A.S. // Inorg. J. Chem. 1987. V. 32. № 4. P. 1002—1005.

18. Vorotyntsev V.M., Balabanov V.V., Shamrakov D.A. // Highpurity subst. 1987. V. 3. P. 74—78.

19. US Patent 4613489, 1986.

20. US Patent 4548917, 1985.

21. Grishnova N.D., Gusev A.V., Moiseev A.N., Mochalov G.M., Balanovskii N.V., Kharina T.P. // Russ. J. App. Chem. 1999. V. 72, № 10. P. 1761—1766.

22. Vorotyntsev A.V., Petukhov A.N., Makarov D.A., Razov E.N., Vorotyntsev I.V., Nyuchev A.V., Kirillova N.I., Vorotyntsev V.M. // App. Cat. B: Environ. 2018. V. 224. P. 621—633. DOI: 10.1016/j.apcatb.2017.10.062.

23. DE Patent 2162537, 1977.

24. Vorotyntsev A.V., Petukhov A.N., Razov E.N., Makarov D.A., Vorotyntsev V.M. // Catal. in Industry. 2018. V. 10. № 4. P. 263-269. DOI: 10.1134/S2070050418040141.

25. Victor Sans, Naima Karbass, M. Isabel Burguete, Vicente Compa Ç, Eduardo García-Verdugo, Santiago V. Luis, Milena Pawlak // Chem. Eur. J. 2011, 17, 1894 — 1906. DOI: 10.1002/chem.201001873.

26. Alcantara-Avila J.R., Sillas-Delgado H.A., Segovia-Hernandez J.G., Gomez-Castro F.I., Cervantes-Jauregui J.A. // Comput. Chem. Eng. 2015. V. 78. P. 85—93. DOI: 10.1016/j.compchemeng.2015.04.014.

27. Vorotyntsev A.V., Petukhov A.N., Makarov D.A., Sazanova T.S., Razov E.N., Nyuchev A.V., Mochalov L.A., Markov A.N., Kulikov A.D., Vorotyntsev V.M. // App. Cat. B: Environ. 2018. V. 239. P.102-113. DOI: 10.1016/j.apcatb.2018.07.069.

28. Low Cost Solar Array Project. Feasibility of the silane process for producing semiconductor-grade silicon. Final report, October 1975-March 1979. United States: N. p., 1979. DOI: 10.2172/5535914.

29. Benkeser R.A. Acc. Chem. Res. 1971. V. 4, № 3. P. 94-100. DOI: 10.1021/ar50039a003.


Review

For citations:


Vorotyntsev A.V., Markov A.N., Petukhov A.N., Pryakhina V.I., Atlaskina M.E., Atlaskin A.A., Kapinos A.A., Vorotyntsev V.M. Catalytic Disproportionation of Chlorosilanes Using Imidazolium Ionic Liquids Deposited on Polymer Supports. Kataliz v promyshlennosti. 2020;20(4):247-259. (In Russ.) https://doi.org/10.18412/1816-0387-2020-4-247-259

Views: 726


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)