Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

The Hydrolysis-Reduction of Arabinogalactan in the Presence of Ru/Cs3HSiW12O40 Catalyst

https://doi.org/10.18412/1816-0387-2020-4-303-312

Abstract

The hydrolysis-reduction of hemicellulose arabinogalactan to arabitol and galactitol polyalcohols, which are widely used in the food and pharmaceutical industries, was studied. It was shown that the process could be performed with the bifunctional catalyst containing highly dispersed ruthenium deposited on the cesium salt of silicon-tungsten heteropolyacid, Ru/Cs3HSiW12O40. The catalysts with different content of ruthenium (0.3, 0.6 and 1 wt.%) were synthesized for the study. The catalysts and their Cs3HSiW12O40 support were examined by various physicochemical methods (low-temperature nitrogen adsorption, IR spectroscopy, XRD, and TEM). The effect of temperature, substrate/catalyst ratio and ruthenium content in the catalyst on the yields of target products was elucidated. The highest yields of target products were achieved at the metal content of 0.6 wt.% and equal weights of the loaded catalyst and substrate (the 1:1 ratio). At a temperature of 200 °C, arabitol and galactitol can be produced with the yields up to 12 and 48 % for 2 h of the reaction in the presence of catalyst with the composition 0.6%Ru/Cs3HSiW12O40.

About the Authors

N. V. Gromov
Boreskov Institute of Catalysis SB RAS, Novosibirsk; Novosibirsk State Technical University
Russian Federation


T. B. Medvedeva
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


V. N. Panchenko
Boreskov Institute of Catalysis SB RAS, Novosibirsk; Novosibirsk State Technical University
Russian Federation


M. N. Timofeeva
Boreskov Institute of Catalysis SB RAS, Novosibirsk; Novosibirsk State Technical University
Russian Federation


V. N. Parmon
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


References

1. Bruggink A., Schoevaart R., Kieboom T. // Organic Process Research & Development. 2003. V.7. P. 622—640. DOI: 10.1021/op0340311.

2. Gallezot P., Kiennemann A. Conversion of Biomass on Solid Catalysts in: Handbook of Heterogeneous Catalysis, Vol. 11 (Eds.: G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp), Wiley-VCH Verlag GmbH & Co. KGaA. 2008. P. 2447—2476.

3. Palkovits R., Tajvidi K., Procelewska J., Rinaldi R., Ruppert A. // Green Chemistry. 2010. V. 12. P. 972—978. DOI: 10.1039/C000075B.

4. Liang G., Wu C., He L., Ming J., Cheng H., Zhuo L., Zhao F. // Green Chemistry. 2011. V. 13. P. 839—842. DOI: 10.1039/C1GC15098G.

5. Geboers J., Van de Vyver S., Carpentier K., de Blochouse K., Jacobs P., Sels B. // Chemical Communication. 2010. V. 46. P. 3577—3579. DOI :10.1039/C001096K.

6. Balandin A.A., Vasyunina N.A., Chepigo S.V., Barysheva G.S. // Dokl. Akad. Nauk SSSR 128 (1959) 941.

7. Fukuoka A., Dhepe P.L. // Angewandte Chemie. 2006. V. 45. Is. 31. P. 5161—5163. DOI: 10.1002/anie.200601921.

8. Fukuoka A., Dhepe P.L. // The Chemical Record. 2009. V. 9. Is. 4. P. 224—235. DOI: 10.1002/tcr.200900004.

9. H. Li, Z. Fang R.L. // Progress in Energy and Combustion Science. 2016. V. 55. P. 98—194. DOI: 10.1016/j.pecs.2016.04.004.

10. Медведева Т.Б., Громов Н.В., Родикова Ю.А., Тимофеева М.Н., Жижина Е.Г., Aymonier С., Таран О.П. // Вестник Томского гос. ун-та. Химия. 2018. № 11. С. 6—22. DOI: 10.17223/24135542/11/1.

11. Ribeiro L.S., Órfão J.J.M., Pereira M.F.R. // Green Chemistry. 2015. V. 17. P. 2973—2980. DOI: 10.1039/C5GC00039D.

12. Almohalla M., Rodríguez-Ramos I., Ribeiro L.S., Órfão J. J.M., Pereira M.F.R., Guerrero-Ruiz A. // Cataysis Today. 2018. V. 301. P. 65—71. DOI: 10.1016/j.cattod.2017.05.023.

13. Luo C., Wang S., Liu H. // Angew Chem Int Edit. 2007. V. 46. P. 7636—7639. DOI:10.1002/anie.200702661.

14. Han J.W., Lee H. // Catalysis Commuication. 2012. V. 19. Р. 115—118. DOI: 10.1016/j.catcom.2011.12.032.

15. Ribeiro L.S., Delgado J.J., Órfão J.J.M., Pereira M.F.R. // Applied Catalysis B: Environmental. 2017. V. 217. P. 265—274. DOI: 10.1016/j.apcatb.2017.04.078.

16. Reyes-Luyanda D., Flores-Cruz J., Morales-Pérez P.J., Encarnación- Gómez L.G., Shi F., Voyles P.M. // Topic in Catalysis. 2012. V. 55. P. 148—161. https://doi.org/10.1007/s11244-012-9791-5

17. Deng W., Tan X., Fang W., Zhang Q., Wang Y. // Catalysis Letters. 2009. V. 133. P. 167—174. https://doi.org/10.1007/s10562-009-0136-3

18. Kobayashi H., Ito Y., Komanoya T., Hosaka Y., Dhepe P.L., Kasai K., Hara K., Fukuoka A. // Green Chemystry. 2011. V. 13. P. 326—333. https://doi.org/10.1039/C0GC00666A

19. Gromov N.V., Medvedeva T.B., Taran O.P., Timofeeva M.A., Said-Aizpuru O., Panchenk V.N., Gerasimov E. Yu., Kozhevnikov I.V., Parmon V.N. // Applied Catalysis A. 2020. V. 595. N 117489. https://doi.org/10.1016/j.apcata.2020.117489

20. Willför S., Sjöholm R., Laine C., Holmbom B. // Wood Science and Technology. 2002. V. 36. P. 101—110. DOI: 10.1007/s00226-001-0137-x.

21. Willför S., Holmbom B. // Wood Science and Technology. 2004. V. 38. Is. 3. P. 173—179. DOI: 10.1007/s00226-003-0200-x.

22. Kordowska-Waiter M. // Journal of Applied Microbiology. 2014. V. 119. P. 303—314. DOI: 10.1111/jam.12807.

23. Jagtap S. S., Bedekar A. A., Liu J.-J., Jin Y.-S., Rao C.V. // Biotechnology for Biofuels. 2019. V. 12. N 250. https://doi.org/10.1186/s13068-019-1586-5

24. Jiang X., Huang Y., Wang X., Liang Q., Li Y., Li F., Fu X., Huang C., Liu H. // Biomedicine & Pharmacotherapy. 2019. V. 2017. P. 1065—1074. http://dx.doi.org/10.1016/j.biopha.2017.05.025

25. Kusema B.T., Faba L., Kumar N., Mäki-Arvela P., Díaz E., Ordónez S., Salmi T., Murzin D.Yu. // Catalysis Today. 2012. V. 196. P. 26—33. DOI: 10.1016/j.cattod.2012.02.031.

26. Faba L., Kusema B.T., Murzina E.V., Tokarev A., Kumar N., Smeds A., Diaz E., Ordóñez S., Mäki-Arvela P., Willför S., Salmi T., Murzin D.Yu. // Microporous and Mesoporous Materials. 2014. V. 189. P. 189—199. DOI: 10.1016/j.micromeso.2013.08.011.

27. Murzin D.Yu., Kusema B., Murzina E.V., Aho A., Tokarev A., Boymirzaev A.S., Johan Wärnå J., Dapsens P.Y., Mondelli C., Pérez-Ramírez J., Salmi T. // Journal of Catalysis. 2015. V. 330. P. 93—105. DOI: 10.1016/j.jcat.2015.06.022.

28. Murzin D.Yu., Murzina E.V., Tokarev A., Shcherban N.D., Wärnå J., Salmi T. // Catalysis Today. 2015. V. 257. P. 169—176. DOI: 10.1016/j.cattod.2014.07.019.

29. Yamaguchi A., Sato O., Mimura N, Shirai M. // Catalysis Today. 2016. V. 265. P. 199—202. DOI: 10.1016/j.cattod.2015.08.026.

30. Tathod A.P., Dhepe P.L. // Bioresource Technology. 2015. V. 178. P. 36—44. https://doi.org/10.1016/j.biortech.2014.10.036

31. Neimark A.V., Lin Y., Ravikovitch P.I., Thommes M. // Carbon. 2009. V. 47. N 7. P. 1617—1628. DOI: 10.1016/j.carbon.2009.01.050.

32. Ravikovitch P.I., Neimark A.V. // Langmuir. 2006. V. 22. N 26. P. 11171—11179. https://doi.org/10.1021/la0616146

33. Raspolli Galletti A. M., Antonetti C., Longo I., Capannelli G., Venezia A.M. // Applied Catalysis A. 2008. V. 35. P. 46—52. https://doi.org/10.1016/j.apcata.2008.07.044

34. Makarova E.N., Shakhmatov E.G., Udoratina E.V., Kutchin A.V. // Russ. Chem. Bull. 2015. V. 64. P. 1302—1318. https://doi.org/10.1007/s11172-015-1011-6

35. Громов Н.В., Медведева Т.Б., Таран О.П., Тимофеева М.Н., Пармон В.Н. // Катализ в промышленности. 2020. Т. 20. № 3. С. 234—242. DOI: 10.18412/1816-0387-2020-3-234-242.


Review

For citations:


Gromov N.V., Medvedeva T.B., Panchenko V.N., Timofeeva M.N., Parmon V.N. The Hydrolysis-Reduction of Arabinogalactan in the Presence of Ru/Cs3HSiW12O40 Catalyst. Kataliz v promyshlennosti. 2020;20(4):303-312. (In Russ.) https://doi.org/10.18412/1816-0387-2020-4-303-312

Views: 523


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)