

The Hydrolysis-Reduction of Arabinogalactan in the Presence of Ru/Cs3HSiW12O40 Catalyst
https://doi.org/10.18412/1816-0387-2020-4-303-312
Abstract
The hydrolysis-reduction of hemicellulose arabinogalactan to arabitol and galactitol polyalcohols, which are widely used in the food and pharmaceutical industries, was studied. It was shown that the process could be performed with the bifunctional catalyst containing highly dispersed ruthenium deposited on the cesium salt of silicon-tungsten heteropolyacid, Ru/Cs3HSiW12O40. The catalysts with different content of ruthenium (0.3, 0.6 and 1 wt.%) were synthesized for the study. The catalysts and their Cs3HSiW12O40 support were examined by various physicochemical methods (low-temperature nitrogen adsorption, IR spectroscopy, XRD, and TEM). The effect of temperature, substrate/catalyst ratio and ruthenium content in the catalyst on the yields of target products was elucidated. The highest yields of target products were achieved at the metal content of 0.6 wt.% and equal weights of the loaded catalyst and substrate (the 1:1 ratio). At a temperature of 200 °C, arabitol and galactitol can be produced with the yields up to 12 and 48 % for 2 h of the reaction in the presence of catalyst with the composition 0.6%Ru/Cs3HSiW12O40.
About the Authors
N. V. GromovRussian Federation
T. B. Medvedeva
Russian Federation
V. N. Panchenko
Russian Federation
M. N. Timofeeva
Russian Federation
V. N. Parmon
Russian Federation
References
1. Bruggink A., Schoevaart R., Kieboom T. // Organic Process Research & Development. 2003. V.7. P. 622—640. DOI: 10.1021/op0340311.
2. Gallezot P., Kiennemann A. Conversion of Biomass on Solid Catalysts in: Handbook of Heterogeneous Catalysis, Vol. 11 (Eds.: G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp), Wiley-VCH Verlag GmbH & Co. KGaA. 2008. P. 2447—2476.
3. Palkovits R., Tajvidi K., Procelewska J., Rinaldi R., Ruppert A. // Green Chemistry. 2010. V. 12. P. 972—978. DOI: 10.1039/C000075B.
4. Liang G., Wu C., He L., Ming J., Cheng H., Zhuo L., Zhao F. // Green Chemistry. 2011. V. 13. P. 839—842. DOI: 10.1039/C1GC15098G.
5. Geboers J., Van de Vyver S., Carpentier K., de Blochouse K., Jacobs P., Sels B. // Chemical Communication. 2010. V. 46. P. 3577—3579. DOI :10.1039/C001096K.
6. Balandin A.A., Vasyunina N.A., Chepigo S.V., Barysheva G.S. // Dokl. Akad. Nauk SSSR 128 (1959) 941.
7. Fukuoka A., Dhepe P.L. // Angewandte Chemie. 2006. V. 45. Is. 31. P. 5161—5163. DOI: 10.1002/anie.200601921.
8. Fukuoka A., Dhepe P.L. // The Chemical Record. 2009. V. 9. Is. 4. P. 224—235. DOI: 10.1002/tcr.200900004.
9. H. Li, Z. Fang R.L. // Progress in Energy and Combustion Science. 2016. V. 55. P. 98—194. DOI: 10.1016/j.pecs.2016.04.004.
10. Медведева Т.Б., Громов Н.В., Родикова Ю.А., Тимофеева М.Н., Жижина Е.Г., Aymonier С., Таран О.П. // Вестник Томского гос. ун-та. Химия. 2018. № 11. С. 6—22. DOI: 10.17223/24135542/11/1.
11. Ribeiro L.S., Órfão J.J.M., Pereira M.F.R. // Green Chemistry. 2015. V. 17. P. 2973—2980. DOI: 10.1039/C5GC00039D.
12. Almohalla M., Rodríguez-Ramos I., Ribeiro L.S., Órfão J. J.M., Pereira M.F.R., Guerrero-Ruiz A. // Cataysis Today. 2018. V. 301. P. 65—71. DOI: 10.1016/j.cattod.2017.05.023.
13. Luo C., Wang S., Liu H. // Angew Chem Int Edit. 2007. V. 46. P. 7636—7639. DOI:10.1002/anie.200702661.
14. Han J.W., Lee H. // Catalysis Commuication. 2012. V. 19. Р. 115—118. DOI: 10.1016/j.catcom.2011.12.032.
15. Ribeiro L.S., Delgado J.J., Órfão J.J.M., Pereira M.F.R. // Applied Catalysis B: Environmental. 2017. V. 217. P. 265—274. DOI: 10.1016/j.apcatb.2017.04.078.
16. Reyes-Luyanda D., Flores-Cruz J., Morales-Pérez P.J., Encarnación- Gómez L.G., Shi F., Voyles P.M. // Topic in Catalysis. 2012. V. 55. P. 148—161. https://doi.org/10.1007/s11244-012-9791-5
17. Deng W., Tan X., Fang W., Zhang Q., Wang Y. // Catalysis Letters. 2009. V. 133. P. 167—174. https://doi.org/10.1007/s10562-009-0136-3
18. Kobayashi H., Ito Y., Komanoya T., Hosaka Y., Dhepe P.L., Kasai K., Hara K., Fukuoka A. // Green Chemystry. 2011. V. 13. P. 326—333. https://doi.org/10.1039/C0GC00666A
19. Gromov N.V., Medvedeva T.B., Taran O.P., Timofeeva M.A., Said-Aizpuru O., Panchenk V.N., Gerasimov E. Yu., Kozhevnikov I.V., Parmon V.N. // Applied Catalysis A. 2020. V. 595. N 117489. https://doi.org/10.1016/j.apcata.2020.117489
20. Willför S., Sjöholm R., Laine C., Holmbom B. // Wood Science and Technology. 2002. V. 36. P. 101—110. DOI: 10.1007/s00226-001-0137-x.
21. Willför S., Holmbom B. // Wood Science and Technology. 2004. V. 38. Is. 3. P. 173—179. DOI: 10.1007/s00226-003-0200-x.
22. Kordowska-Waiter M. // Journal of Applied Microbiology. 2014. V. 119. P. 303—314. DOI: 10.1111/jam.12807.
23. Jagtap S. S., Bedekar A. A., Liu J.-J., Jin Y.-S., Rao C.V. // Biotechnology for Biofuels. 2019. V. 12. N 250. https://doi.org/10.1186/s13068-019-1586-5
24. Jiang X., Huang Y., Wang X., Liang Q., Li Y., Li F., Fu X., Huang C., Liu H. // Biomedicine & Pharmacotherapy. 2019. V. 2017. P. 1065—1074. http://dx.doi.org/10.1016/j.biopha.2017.05.025
25. Kusema B.T., Faba L., Kumar N., Mäki-Arvela P., Díaz E., Ordónez S., Salmi T., Murzin D.Yu. // Catalysis Today. 2012. V. 196. P. 26—33. DOI: 10.1016/j.cattod.2012.02.031.
26. Faba L., Kusema B.T., Murzina E.V., Tokarev A., Kumar N., Smeds A., Diaz E., Ordóñez S., Mäki-Arvela P., Willför S., Salmi T., Murzin D.Yu. // Microporous and Mesoporous Materials. 2014. V. 189. P. 189—199. DOI: 10.1016/j.micromeso.2013.08.011.
27. Murzin D.Yu., Kusema B., Murzina E.V., Aho A., Tokarev A., Boymirzaev A.S., Johan Wärnå J., Dapsens P.Y., Mondelli C., Pérez-Ramírez J., Salmi T. // Journal of Catalysis. 2015. V. 330. P. 93—105. DOI: 10.1016/j.jcat.2015.06.022.
28. Murzin D.Yu., Murzina E.V., Tokarev A., Shcherban N.D., Wärnå J., Salmi T. // Catalysis Today. 2015. V. 257. P. 169—176. DOI: 10.1016/j.cattod.2014.07.019.
29. Yamaguchi A., Sato O., Mimura N, Shirai M. // Catalysis Today. 2016. V. 265. P. 199—202. DOI: 10.1016/j.cattod.2015.08.026.
30. Tathod A.P., Dhepe P.L. // Bioresource Technology. 2015. V. 178. P. 36—44. https://doi.org/10.1016/j.biortech.2014.10.036
31. Neimark A.V., Lin Y., Ravikovitch P.I., Thommes M. // Carbon. 2009. V. 47. N 7. P. 1617—1628. DOI: 10.1016/j.carbon.2009.01.050.
32. Ravikovitch P.I., Neimark A.V. // Langmuir. 2006. V. 22. N 26. P. 11171—11179. https://doi.org/10.1021/la0616146
33. Raspolli Galletti A. M., Antonetti C., Longo I., Capannelli G., Venezia A.M. // Applied Catalysis A. 2008. V. 35. P. 46—52. https://doi.org/10.1016/j.apcata.2008.07.044
34. Makarova E.N., Shakhmatov E.G., Udoratina E.V., Kutchin A.V. // Russ. Chem. Bull. 2015. V. 64. P. 1302—1318. https://doi.org/10.1007/s11172-015-1011-6
35. Громов Н.В., Медведева Т.Б., Таран О.П., Тимофеева М.Н., Пармон В.Н. // Катализ в промышленности. 2020. Т. 20. № 3. С. 234—242. DOI: 10.18412/1816-0387-2020-3-234-242.
Review
For citations:
Gromov N.V., Medvedeva T.B., Panchenko V.N., Timofeeva M.N., Parmon V.N. The Hydrolysis-Reduction of Arabinogalactan in the Presence of Ru/Cs3HSiW12O40 Catalyst. Kataliz v promyshlennosti. 2020;20(4):303-312. (In Russ.) https://doi.org/10.18412/1816-0387-2020-4-303-312