

Heterogeneous Biocatalytic Processes of the Low-Temperature Synthesis of Esters: Selection of Organic Solvent
https://doi.org/10.18412/1816-0387-2020-4-313-322
Abstract
Processes of the low-temperature enzymatic synthesis of esters in nonaqueous media of organic solvents with participation of heterogeneous biocatalysts synthesized by the adsorption immobilization of a recombinant lipase from Thermomyces lanuginosus (Pichia pastoris producer) on macroporous carbon aerogel were investigated. The esterification reaction was conducted using individual organic solvents of different polarity, such as nonpolar ones (lоgP > 2.5) – hexadecane, hexane and toluene, and polar solvents (lоgP < 1) – diethyl ether, tert-butanol and acetone, as well as their binary mixtures of different composition, for example, a mixture of hexane with diethyl ether having the composition 1 : (1/5÷3, vol. fr.). The effect of the solvent and co-solvent nature on the properties of synthesized biocatalysts, namely the enzymatic activity and operational stability, was studied in the batch esterification of heptanoic acid (C7:0) by alcohols, particularly the polar substrates – ethanol and n-butanol, or nonpolar alcohols – n-octanol and n-hexadecanol. Activity of the synthesized biocatalysts was found to depend to a great extent on polarity of both the solvents used in the reaction and the alcohol substrates. The maximum activity of 400 EA·g–1 was observed in a medium of nonpolar and nonviscous hexane (lоgP = 2.9), whereas the minimum activity of 4 EA·g–1 – in acetone (lоgP = 0.4); esterification of heptanoic acid in the presence of tert-butanol (lоgP = 0.6) virtually did not proceed. The activity of biocatalysts was shown to depend nonmonotonically on the lоgP value of individual solvent. In the binary mixtures of organic solvents, such as hexane/diethyl ether, biocatalytic activity linearly increased with an increase in lоgPmixture; in addition, biocatalysts exhibited the maximum operational stability.
About the Authors
G. A. KovalenkoRussian Federation
L. V. Perminova
Russian Federation
References
1. Войткевич С.А. 865 душистых веществ для парфюмерии и бытовой химии. М.: Пищевая промышленность, 1994. 594 с.
2. Солдатенков А.Т., Колядина Н.М., Ле Туань Ань. Основы органической химии душистых веществ для прикладной эстетики и ароматерапии. М.: Академкнига, 2006. 240 с.
3. Almeida de R.M., Souza F.T.C., Junior M.A.C., Albuquerque N.J.A., Meneghetti S.M.P., Meneghetti M.R. // Catalysis Comm. 2014. Vol. 46. P. 179—182.
4. Chang S.W., Shaw J.F. // New Biotechnol. 2009. Vol. 26. No. 3/4. P. 109—116.
5. Stergiou P.Y., Foukis A., Filippou M., Koukouritaki M., Parapouli M., Theodorou L.G., Hatziloukas E., Afendra A., Pandey A., Papamichael E.M. // Biotechnol. Adv. 2013. Vol. 31. P. 1846—1859.
6. Gumel A.M., Annuar M.S.M., Heidelberg T., Chisti Y. // Process Biochem. 2011. Vol. 46. P. 2079—2090.
7. Sun J., Lee L.W.W., Liu S. Q. // Aust. J. Chem. 2014. Vol. 67. P. 1373—1381.
8. Villeneuve P. // Biotechnol. Adv. 2007. Vol. 25. P. 515—536.
9. Безбородов А.М., Загустина Н.А. // Прикл. биохим. микробиол. 2014. Т. 50. № 4. С. 347—373.
10. Nguyen P.C., Nguyen M.T.T., Lee C.-K., Oh I.-N., Kim J.-H., Hong S.-T., Park J.-T. // Carbohydrate Polymers. 2019. Vol. 218. P. 126—135.
11. Janssen A.E.M., Sjursnes B..J., Vakurov A.V.U,. Halling P.J. // Enzyme Microb. Technol. 1999. Vol. 24. P. 463—470.
12. Laane C., Boeren S., Vos R., Veeger C. // Biotechnol. Bioeng. 1987. Vol. 30. P. 81—87.
13. Su E., Wei D. // J. Mol. Catal. B: Enzym. 2008. Vol. 55. P. 118— 125. doi: 10.1016/j.molcatb.2008.03.001.
14. Гамаюрова В.С., Зиновьева М.Е., Елизарова Е.В. // Катализ в промышленности. 2008. № 3. С. 54—58.
15. Гамаюрова В.С., Зиновьева М.Е., Калачев Н.В., Шнайдер К.Л. // Катализ в промышленности. 2015. Т. 15. № 2. С. 73—78.
16. Гамаюрова В.С., Шнайдер К.Л., Джамай М.Д.Д. // Катализ в промышленности. 2016. Т. 16. № 3. С. 64—68.
17. Abildskov J., van Leeuwen M.B., Boeriu C.G., van den Broek L.A.M. // J. Mol. Catal. B: Enzym. 2013. Vol. 85— 86. P. 200—213. doi.org/10.1016/j.molcatb.2012.09.012.
18. Stamatis H., Xenakis A., Provelegiou M., Kolisis F.N. // Biotechnol. Bioeng. 1993. Vol. 42. P. 103—110.
19. Gandhi N.N., Mukherjee K.D. // J. American Oil Chem. Soc. 2001. Vol. 78. P. 161—165.
20. Arsan J., Parkin K.L. // Biotechnol. Bioeng. 2000. Vol. 69. P. 222—226.
21. Коваленко Г.А., Перминова Л.В., Беклемишев А.Б., Мамаев А.Л., Патрушев Ю.В. // Катализ в промышленности. 2017. Т. 17. № 5. С. 399—406. (Catalysis in Industry. 2018. V. 10. No 1. P. 68—74.)
22. Kovalenko G.A., Perminova L.V., Beklemishev A.B. // Reac. Kinet. Mech. Cat. 2019. Vol. 128. P. 479—491. DOI: 10.1007/s11144-019-01648-z.
23. Kovalenko G.A., Perminova L.V., Krasnikov D.V., Kuznetsov V.L. // J. Porous Mater. 2018. Vol. 25. P. 1017—1026. DOI: 10.1007/s10934-017-0512-0.
24. Bearden J.C., Jr. // Biochim. Biophys. Acta. 1978. Vol. 533. P. 525—529.
25. Viswanadham V.N., Ghose A.K., Revankar G.N., Robins R.K. // J. Chem. Inf. Comput.Sci. 1989. Vol. 29. P. 163—171.
26. Cea M., González M. E., Abarzúa M., Navia R. // J. Environ. Management. 2019. Vol. 242. P. 171—177.
27. Yadav M.G., Vadgama R.N., Kavadia M.R., Odaneth A.A., Lali A.M. // Biotechnol. Reports. 2019. Vol. 23. art. no. E00353.
28. Sá A.G.A., de Meneses A.C., Lerin L.A., de Araújo P.H.H., Sayer C., de Oliveira D. // Bioprocess Biosystems Eng. 2018. Vol. 41. P. 585—591.
Review
For citations:
Kovalenko G.A., Perminova L.V. Heterogeneous Biocatalytic Processes of the Low-Temperature Synthesis of Esters: Selection of Organic Solvent. Kataliz v promyshlennosti. 2020;20(4):313-322. (In Russ.) https://doi.org/10.18412/1816-0387-2020-4-313-322